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Abstract. This study investigates the efficacy of healthcare data analy-
sis within the stringent framework of local differential privacy (LDP). By
ensuring the privacy of individual data points while allowing for compre-
hensive analysis, LDP presents unique challenges and opportunities. This
research compares various methodologies to determine their performance
in the context of healthcare data. Our analysis highlights the suitability
of different approaches, particularly emphasizing the balance between
privacy preservation and data utility. The findings reveal that method
Castell which is based on probability matrixes exhibit superior perfor-
mance. This study thus contributes to the field of privacy-preserving
healthcare analytics, offering valuable insights into the application of
LDP in maintaining data integrity and utility.
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1 Introduction

The exponential growth of healthcare data, driven by the widespread adop-
tion wearable devices, presents unprecedented opportunities for revolutionizing
medicine. Insights derived from these abundant resources have the potential to
enhance treatment strategies, improve disease diagnosis, and optimize healthcare
resource allocation. However, the transformative potential of this data is contin-
gent upon effectively balancing the need to unlock its value while safeguarding
patient privacy. Traditional anonymization techniques have proven insufficient,
prompting the adoption of differential privacy (DP) and its extension to local
differential privacy (LDP). LDP [7] enhances privacy by anonymizing data at
the point of collection, ensuring that even if the data is compromised, individual
identities remain protected.

In healthcare data analysis under LDP, estimating joint probability distri-
butions (JPD) is crucial for capturing correlations and dependencies between
various health variables. Techniques such as Bloom filters (BF)[4] and random-
ized response (RR)[5] are commonly used but can face challenges related to
memory consumption and dimensionality. To address these issues, Kikuchi et al.



proposed use Castell algorithm [6] which applies probability matrixes to estimate
JPD more efficiently. This method improve accuracy compared to traditional BF
and RR techniques. This paper evaluates these approaches using open healthcare
datasets, demonstrating that Castell approach provides superior performance.

Table 1. Difference between Lopub, Locop, Br, and Castell.

Approach Lopub [1] Locop [3] Br [2] Castell [6]

Perturbation Bloom filter
Randomize Response

Randomize
Response

Estimation

Lasso
with

Expectation
Maximization

algorithm

Lasso
with

Gaussian
Copula

Bayesian
Ridge

Regression

Probability
matrixes

The following sections of the paper are organized as follows: Section 2 briefly
describes the LDP problem, as well as the methods used for anonymizing patient
data and estimating JPD. These methods are employed by various approaches,
including Lopub [1], Locop [3], Br [2], and Castell [6]. Following this, section 3
presents the experiments conducted, detailing the datasets used and the metrics
employed to evaluate the performance of the approaches. Finally, the paper
concludes with the Conclusion section.

2 Preliminaries

In LDP approaches, patients who wish to share their information with a central
server must encode and perturb their data before sending it to the server. By
doing this, patients preserve their anonymity. We generalize the LDP problem,
considering N patients with C attributes as ui

j ; (i = 1, . . . , N ; j = 1, . . . , C),
where the superindex i means the number of user and the subindex j means the
number of attribute for the patient n. The domain of each attribute is denoted
Ωj = {ω1

j , . . . , ω
|Ωj,k|
j }. The cardinality |Ωj | means the number of elements in

the attribute j.

2.1 Local Differential Privacy

LDP [7] offers a strong privacy guarantee that allows patients to trust themselves,
rather than relying on a centralized authority.

Definition 1 (Local Differential Privacy). An algorithm S satisfies ϵ-LPD
if, for any two records u and w and any output ũ within the range of outputs of
the algorithm S(ũ), the equation (1) holds:

Pr[S(u) ∈ ũ] ≤ eϵPr[S(w) ∈ ũ]. (1)



2.2 Approaches

These subsections outline the approaches to anonymize patient’s data and es-
timate the JPD of Lopub[1], Locop[3], Br[2], and Castell[6]. For more compre-
hesive details, please consult the original papers. The goal is to share patient
data while preserving their privacy, enabling researchers to use the data to gain
demographic insights from the dataset.

2.2.1 Anonymization Algorithms This subsection briefly describes the
anonymization algorithms used by the studied approaches. Two main methods
are discussed: the Bloom filter and randomized response (BF-RR) approach used
by Lopub, Locop, and Br, and the direct randomized response (RR) on raw data
used by Castell.

2.2.1.1 BF-RR The BF-RR algorithm, proposed by Ren et al.[1] and utilized
by Lopub, Locop, and Br, involves encoding and perturbing patient data. Each
patient record is encoded using Bloom filters (BF)[4] with multiple hash func-
tions, producing bit strings that represent the attributes. This encoded data is
then subjected to randomized response (RR)[5] , where each bit of the bit string
is randomly flipped with a certain probability to ensure privacy. This process
generates a randomized Bloom filter that is transmitted to the server, preserving
user privacy through local randomization techniques.

Encoding information of users The user input is represented by the BF
Hj for the jth attribute; the patient uses h hash functions Hj,1, . . . ,Hj,h to map
the data into a bit string, in our experiments we set h = 4. One variable is used
for encoding the information of the users: the maximum number of bits mj , as
mj = ln(1/p)

(ln2)2 |Ωj |. Where p is false positive probability, in our experiments we
set p = 0.022. After encoding step is applied, the user input is represented as
y = (y[1], y[2], y[3], ..., y[mj ])

Perturbing the data RR allows interviewer to give their answers while
keeping confidentiality. Randomly the question is to be answered truthfully or
not, unknown to the interviewer. RR response is applied after encoding step,
each bit b, b ∈ {1,mj} of y is randomly flipped. The output ŷ[b] is defined as
follows:

ŷ[b] =

y[b] with probability of 1− f,
1 with probability of f/2,
0 with probability of f/2,

(2)

User privacy is preserved through the assurance of confidentiality provided
by individualized local randomization methods, which users autonomously apply
to their data entries. The local perturbation of d attributes can achieve ϵ-local
differential privacy (ϵ-LDP), with h being the number of hash functions in the
Bloom filter and f the flip bit probability, as given by ϵ = 2dh ln 2−f

f .



2.2.1.2 RR Let ui
j represent the true value of the jth attribute for the ith

patient. Each patient flips a biased coin with probability p = eϵ

eϵ+|Ωj |−1 , where
ϵ is the privacy budget. If the coin shows heads, the patient reports their true
value ui

j . If the coin shows tails, the patient selects a random value ûi
j from the

set of possible responses Ωj . Finally, patients report this data to the server.

2.2.2 Estimating Joint Probability Distributions (JPD) This subsec-
tion details the algorithms used to estimate JPD. Four methods are highlighted:
regression analysis (Lopub, Br), Lasso regression with Gaussian copula (Locop),
and Castell.

2.2.2.1 Regression Algorithms The central server receives the noised infor-
mation of the patients. Next, it counts the frequency of the perturbed value
ŷ[b]. Then, the original count y[b] is estimated as y[b] = (ŷ[b] − fN/2)/(1 − f).
After the original count is computed, the candidate bit matrix M is M =
[H1(Ω1) × H2(Ω2) × · · · × Hk(Ωk)], where Hj(Ωj) is a matrix for j = 1, . . . k,
k is the number of attributes for which the JPD is to be estimated. Finally, the
coefficients β of the regression algorithm (Lasso[1] for Lopub and Bayesian ridge
regression [2] for Br) y = Mβ, is used to estimate the JPD as JPD = β

sum(β) .

2.2.2.2 Lasso Regression with Gaussian Copula The central server re-
ceives the perturbed patient information. Initially, it estimates the one-dimensional
and two-dimensional distributions using the methodology outlined by Ren [1].
Subsequently, it calculates the Pearson correlation coefficient matrix for the k-
dimensional attributes, which is utilized in modeling the multivariate Gaussian
Copula. For any pair of attributes (Uw, Uv) (w, v = 1, ..., d), the Pearson corre-
lation ρUw,Uv

is computed, forming the correlation matrix R. Finally, the multi-
variate Gaussian Copula is formulated based on the Gaussian Joint Distribution
Φ(0, R).

2.2.2.3 Castell After the patients apply RR to their data and transmit it
to the central server, the central server has the dataset Û and proceeds with
JPD estimation. It derives empirical values, κj , for each attribute j from the
randomized patient data. Next, for each jth attribute in Û a probability matrix
Λj is defined as:

Λjk,l
=

{
1−p

|Ωj |−1 if k ̸= l,

p if k = l,
(3)

where p = eϵ

eϵ+|Ωj |−1 , Λj is a square matrix of size |Ωj | × |Ωj |.
The empirical values κj , along with the probability matrix λj calculated

using equation (3), constitute the foundational steps of the algorithm. With it-
erative attribute processing marked by i, the algorithm computes transformation
parameters γ, utilizing attribute-specific probability matriXes λi and empirical
values κi. Through this systematic approach, a modified matrix Γ is constructed,



employing the inverse of the probability matrix Λ−1
i and γ, thus updating the

JPD via the product with Γ . The Castell[6] algorithm is outlined in 1.

Algorithm 1 Castell algorithm
attributes (i = 1, 2, ..., d)
JPD = 1
for each i do

γ = Λi · κi

Γ = Λ−1
i · γ

JPD′ ← Γ × JPD
end for

Table 2. Datasets characteristics.

Dataset # Patients (N) # Attributes (C)
Skin Cancer [9] 10,015 5

Nursery [8] 12,960 9
Diabetes [10] 70,692 18

3 Experiments

3.1 Datasets

The paper evaluates these approaches using open healthcare datasets, comparing
their performance in terms of accuracy. Table 2 presents the statistics of the
size of the datasets, including characteristics such as attributes and patients.
Through a discretization process, the datasets have been transformed, converting
their continuous attributes into five distinct categories. The datasets exhibit
significant variations in patient population and attributes. The Diabetes dataset
boasts the highest number of patients and the highest number of attributes.

3.2 JPD estimation

We randomly select a subset of k attributes from each dataset and compute their
JPD in a k-way. This process is repeated one hundred times.

To analyze performance when estimating JPD, we use the average variant
distance (AVD) metric to quantify the disparity between real and estimated
data. AVD, as employed by [1, 3, 2, 6]. It is defined as AVD = 1

2

∑
ω∈Ω |P (ω)−

Q(ω)|, where a value close to zero indicates more accurate JPD. The results are
presented in the Figure 1.

Figure 1 presents a comparative analysis of the performance of four LDP
approaches across different datasets. The upper part of the figure illustrates the



AVD vs Privacy Budget (ϵ) per attribute with 3-way.

AVD vs k-way, with ϵ = 1.

Skin cancer Nursery Diabetes

Fig. 1. AVD vs Privacy Budget (ϵ) per attribute with 3-way.

AVD and privacy budget ϵ, while the lower part shows the AVD and k-way
comparison. These approaches include the simple Lopub, which relies solely on
LASSO regression, Locop, Br, and Castell.

On the Y-axis, AVD indicates the level of distortion caused by anonymization
after attempting to recover the Joint Probability Distribution (JPD). Lower
AVD values imply less error, which is desirable. In the upper figure, the X-axis
represents ϵ, the privacy budget determining the degree of privacy protection
offered. Lower ϵ values signify stronger privacy guarantees but may result in
higher AVD. On the bottom figures, the X-axis represents the k-way evaluation.

Each line in the graph represents the performance of an LDP approach on a
specific dataset, with points depicting the trade-off between AVD and the privacy
budget (ϵ). Notably, the Castell approach consistently achieves the lowest AVD
across all datasets for a given ϵ value, indicating its effectiveness in minimizing
data distortion within a specific privacy budget.

In contrast, the Lopub, Br, and Locop approaches tend to have higher AVD
than Castell for the same ϵ value, suggesting greater data distortion to achieve
similar privacy levels. The Br approach shows close but not similar performance
to Castell for some datasets.

However, it is important to note that algorithm performance can vary de-
pending on the dataset, as shown in the bottom of Figure 1. For example, Castell
significantly outperforms Locop, Lopub, and Br (which presents close but not
similar values) on the Diabetes dataset, while the difference is less pronounced



on the Skin cancer dataset due to differences in the average absolute Pearson
correlation coefficient (AAR) between datasets, as examined by [2]. Overall,
Figure 1 shows that Castell is the preferred approach for minimizing AVD while
maintaining a low ϵ.

4 Conclusion

In summary, our analysis of four LDP approaches (Lopub, Locop, Br, and
Castell) has provided valuable insights into their performance on healthcare
datasets. We discovered that the Castell approach consistently achieved the low-
est Average Value Distortion (AVD) across various datasets for a given privacy
budget, indicating its effectiveness in minimizing data distortion while preserv-
ing privacy. Furthermore, we observed that dataset characteristics influenced the
performance of LDP approaches. Our findings suggest that the Castell approach
is preferable for minimizing AVD while maintaining a low epsilon value. Future
research should prioritize comparing memory consumption between approaches
and generating synthetic data using joint probability distributions as estimated
by Castell. Additionally, evaluating their performance on large medical datasets
is essential.
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