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Abstract. A gait provides the characteristics of a person’s walking style and
hence is classified as personal identifiable information. There have been sev-
eral studies for personal identification using gait, including works using hard-
ware such as depth sensors and studies using silhouette image sequences of gait.
However, these methods were designed specialized for tracking a single walk-
ing person and the accuracy reduction when multiple people are simultaneously
reflected in several angles of view is not clear yet. In addition, dependencies on
hardware-based methods is not clarified yet. In this study, we focus on Kinect
and OpenPose, the representative gait identification techniques with a function
to detect multiple people simultaneously in real time. We investigate how many
people can be identified for these devices and with the accuracy for tracking.

1 Introduction

Multiple human tracking refers to the task of simultaneously detecting and tracking
multiple individuals in a given scene or video. The objective is to accurately locate
and follow each person’s movement throughout the sequence of frames or time. The
goal of multiple human tracking is to provide a comprehensive understanding of the
activities and interactions of multiple people in various applications, such as surveil-
lance [1], crowd analysis [2], behavior understanding, human-computer interaction, and
augmented reality.

The process of multiple human tracking typically involves several steps. First, in-
dividual humans need to be detected or localized in each frame, often using computer
vision techniques such as object detection [3][4], face detection [5][7][34] or pose esti-
mation [8][35]. Next, these detection or pose estimates are linked across frames to es-
tablish trajectories, ensuring consistent and accurate tracking over time. Various meth-
ods and algorithms are employed for data association and tracking. Muaaz et al.[31]
proposed a person identification method using a smartphone-based accelerator. They
used the acceleration information of an Android device in a person’s front pocket as
data. Preis et al. proposed a gait recognition method using Kinect [9]. They used a de-
cision tree and a Naive Bayes classifier to recognize the gait. Han et al. [10] proposed
the gait energy image (GEI). The advantages of GEI are the reduction of processing
time, reduction of storage requirements, and robustness of obstacles. Backchy et al.
[11] proposed a gait authentication method using Kohonen’s self-organizing mapping
(K-SOM). In this work, the authors used K-SOM to classify GEI and reported a 57%
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recognition rate. Shiraga et al. proposed the GEINet [12] using a convolutional neural
network to classify GEI images. The best EER obtained was 0.01.

In this study, we consider two approaches: the computer vision approach using
OpenPose [20] and the depth sensor approach such as Kinect [14]. Computer vision
approaches can be applied to a variety of applications and provide rich information in-
cluding joint positions without any additional sensors or equipment, relying solely on
visual data captured by cameras. However, computer vision methods primarily rely on
2D image data, which may lack depth information required for precise depth-related
analysis. In contrast, depth sensors, like Kinect, provide depth data, enabling more ac-
curate and detailed 3D tracking of human movements and positions. But, depth sen-
sors often have limited tracking ranges, which may restrict their applicability to certain
scenarios. The pros and cons are can vary depending on specific applications and im-
plementations for tracking. Hence, it is not trivial to determine which is superior than
others.

To evaluate the effectiveness of these two approaches, we employ the Dynamic
Time Warping (DTW) [15] algorithm for individual identification. The DTW algorithm
leverages the 3-dimensional coordinates obtained from either approach to recognize in-
dividuals. By calculating the DTW distance of time series data representing a complete
walking cycle, it enables multiple human tracking, accommodating crowded scenes,
and addressing environmental variations. Our objective is to utilize DTW for reliable
and precise human tracking, facilitating a comprehensive understanding of behaviors
and enabling in-depth analysis of human movements in urban environments.

In this study, we develop a testbed for human tracking, implementing two represen-
tative approaches: OpenPose and Kinect. We conduct small-scale experiments to assess
the robustness and accuracy of estimation provided by these approaches in the context
of multiple human tracking.

2 Preliminary

2.1 OpenPose

OpenPose [20] is an open-source computer vision library that enables real-time multi-
person tracking from video and image data. OpenPose is capable of estimating the 25
positions of body joints, such as the shoulders, elbows, wrists, hips, knees, and ankles,
for multiple individuals in a frame.

OpenPose utilizes convolutional neural networks (CNN5s) to analyze visual data and
extract keypoint information. The library employs a two-step process: first, it generates
a set of body part candidates through a body part detector, and then it associates these
candidates to corresponding body parts and individuals through a series of refinement
stages.

Fig. 1 shows the example of keypoint detection in OpenPose. It offers several ad-
vantages for person tracking: First, tracking multiple individuals simultaneously in real-
time. It is a significant advantage for application that captures the movement of guest
in shopping malls. Second, it detect human from images without any special equipment
such as 3D depth sensors.
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Fig. 1: Sample OpenPose Fig.2: Sample 3d-pose- Fig.3: Sample 3D skele-
execution baseline execution ton data via Kinect

Despite its advantages, it has some limitations: (i) Limited to 2D Keypoint Esti-
mation: OpenPose focuses on 2D keypoint estimation, meaning it provides positional
information for body joints in the image plane. It lacks depth information and hence
suffers low estimation accuracy. Its performance can be affected by image quality and
variations in camera viewpoints. (ii) Resource Intensive: Real-time multi-person track-
ing with OpenPose can be computationally demanding. It requires substantial compu-
tational resources, including a powerful GPU, to achieve real-time performance.

To estimate 3D points from 2D keypoint estimated from OpenPose, Julieta et al. [29]
proposed an effective model and developed open-source software, 3D-Pose-Baseline. It
is based on an assumption that a 3D pose can be represented as a linear combination of
a set of 3D basis points. Fig. 2 shows the sample of estimated 3D points of human. It
demonstrates that some joints are accurately estimated.

2.2 Kinect

Kinect [14] is a motion-sensing input device developed by Microsoft for use with gam-
ing. It was initially released as an accessory for the Xbox 360 gaming console in 2010.
The Kinect sensor combines a depth camera, RGB camera, and multi-array microphone
to provide a range of interactive and immersive experiences.

Kinect utilizes a structured light or time-of-flight technology to capture depth in-
formation of the surrounding environment. It measures the distance between the sensor
and objects, enabling 3D depth perception. Kinect has built-in algorithms and software
libraries for robust human body tracking and gesture recognition. It can detect and track
the movements of multiple individuals within its field of view, allowing for natural and
intuitive interaction in gaming, fitness, and person tracking. Fig. 3 shows the sample of
3D skeleton data captured via Kinect. We utilize Microsoft library Kinect for Windows
v2 for retrieving the 3D points for this study.

Tracking more than six individuals becomes challenging due to the complexity of
processing the depth data, distinguishing individual bodies, and maintaining accurate
tracking in real-time. The hardware and computational resources of the Kinect sensor
are optimized to handle a limited number of tracked bodies. Although the tracking lim-
itation of six individuals is specific to the Kinect sensor, it apply to other depth-sensing
devices or motion-tracking systems.
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2.3 Related works

There are many approaches for multiple person tracking using various devices.

Multi-Camera Tracking Many works utilize multiple cameras to improve tracking
accuracy. Each camera provides a different viewpoint, and sophisticated algorithms are
used to use data from these cameras to track individuals as they move across different
views. This is especially common in surveillance systems. Amosa et al. [16] categorized
existing works based on on six crucial facets and summarized 30 state-of-the-art MCT
algorithms on common datasets.

Depth Sensors Depth sensors have been widely used for multiple person tracking.
They provide accurate depth information, which helps in distinguishing between indi-
viduals and handling occlusions more effectively. Preis et al. proposed a gait recognition
method using Kinect [9]. They used a decision tree and a Naive Bayes classifier to rec-
ognize the gait. In their work, a success rate of 91.0% was achieved for nine subjects.
Studies using depth sensors include [17, 18].

Device-based Tracking Each smartphone continuously records accelerometer and gy-
roscope data, allowing us to capture motion patterns and changes in orientation. Muaaz
et al.[31] introduced a multiple person tracking approach utilizing smartphone accelerom-
eter data. Their method focuses on identifying individuals based on the accelerometer
readings of an Android device placed in the front pocket of a person. During the reg-
istration phase, walking cycles are defined as templates, and multiple templates are en-
rolled. In the subsequent authentication phase, the system assesses the distances from
all registered templates and considers the user as the correct individual if more than half
of the templates fall within the predefined threshold.

3 Person Tracking based on Gait

Person tracking becomes feasible by utilizing gait data, which comprises a time-sequence
of 3D points representing the primary joints of the human body. In this section, we

describe the approach introduced by [18], which incorporates metrics quantifying the

Dynamic Time Warping (DTW) [15]. This approach aims to recognize individuals by

utilizing 3-dimensional coordinates obtained from motion capture sensors. It involves

calculating the DTW distance of the time series data representing one complete cycle

of walking. The method encompasses four key steps: cycle extraction, calculation of

relative coordinates, computation of DTW distance, and person recognition.

3.1 Cycle Extraction

Let a;(t) = (x,y,z) be a time series of 3-dimensional absolute coordinates of joint £
in time 7. The collection of these time series data, representing absolute coordinates at
different points in time, is referred to as skeleton data.
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From the skeleton data, we extract a single cycle of walking. In our specific context,
each video stream observation typically contains approximately two complete walking
cycles.

First, let A(¢) be the distance between both feet in time ¢, defined using a;r () and
agp(t) as

A1) = £llagr (1) — arr @Il ey

If the right foot is in front, The sign of A(¢) determines whether the right foot is posi-
tioned in front (positive) or not (negative).

Next, we apply Fourier transformation to the time series 4(1), ..., 4(n) and employ a
low pass filter to reduce noise and identify a single cycle. The resulting low-frequency
components at a rate of 1/30 are processed further. For cycle extraction, we define a
cycle of walking as the period between peaks. It is important to note that the low-pass
filter is solely used for cycle extraction purposes, while the DTW algorithm operates on
the non-filtered data. In the cycle extraction phase, time ¢ is a unit corresponding to the
frame rate of the motion capture sensor. The frame rate is 30 fps. Suppose that we have
one cycle as a series of features from the first peak (z = 37) to the second peak (¢ = 70).
The data is normalized from #; to t3s.

3.2 DTW Distance

We compute the relative coordinates of joints while walking, with the choice of the
coordinate origin being stable joints located at the center of the body (SpineMid). Given
an absolute coordinate of center joints ¢ at time ¢ a.(¢), the relative coordinate r is
defined as r¢(1) = a.(t) — a.(1).

We use a multi-dimensional Dynamic Time Warping [30], which is a technique used
to measure the similarity between two temporal sequences. It is commonly employed in
various fields, including time series analysis, speech recognition, gesture recognition,
and pattern recognition. The goal of DTW is to find an optimal alignment or warping
path between two sequences by stretching or compressing the time axes. This alignment
aims to minimize the differences between corresponding elements of the sequences, al-
lowing for comparison and similarity estimation even when the sequences have varia-
tions in length or speed.

Dynamic programming is used to find the optimal warping path through the cost
matrix, providing distance between elements of two sequences. The algorithm itera-
tively computes the cumulative cost along different paths and identifies the path with
the minimum total cost as follows.

Consider two sets of time series data denoted as P = (p1,p2,...,Pn) and Q =
(q1>92; - - - » qny)- The distance between them, represented by d(P, Q), is defined as d(P, Q) =
f(np,np). The cost function f(i, j) is calculated recursively as

f(l’]) = ”pl _q/” + mln(f(l’]_ 1)7f(l - 17])»f(l - 17]_ 1)’) (2)

with initial conditions; f(0,0) = 0, and f(i,0) = f(0, j)) = co. When several features
are aggregated, the distance is calculated as follows. Given two data sets (R, R,;) and
(R}, R;,), and data of joints ¢ and m, the integrated DTW distance D((R;, R), (R}, R},))
is defined as an Euclidean distance of all DTW distances.
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3.3 Human identification

Consider the set U representing all users. Let R™ denote the time series data of k pieces
of normalized relative coordinates for user u. Given a set of s data pieces (R*1, ..., R*s),
we define one of them as the template data R Two users, u and v, are considered iden-
tical if the integrated DTW distance D(R™, R™) between their respective sets of time
series data, R" and R®™, is less than a threshold value 6. The threshold ¢’ is determined
using the Equal Error Rate (EER), which is an error rate at which the False Acceptance
Rate (FAR) equals the False Rejection Rate (FRR).

4 Evaluation

4.1 Objectives
Our experiment aims to achieve the following objectives:

1. Evaluate the baseline accuracy of gait tracking using DTW distance for multiple
humans.

2. Compare two tracking approaches: the computer vision approach utilizing Open-
Pose and the deep sensor approach using Kinect.

We have developed a testbed system to capture the 3D time-series data of walking
humans. For the essential features, we the Processing V3 with the KinectPV?2 library,
which provides access to Kinect for Windows V2 [14].

4.2 Data

The experimental conditions are presented in Table 1, outlining the specifications. The
data collected includes two types of scenarios: walking by a single individual and walk-
ing by multiple individuals. The observations took place in a gymnastic hall, where sub-
jects walked without encountering any obstacles. During the experiment, the subjects
were instructed to walk while being recorded from three different camera viewpoints:
front camera, as well as cameras positioned obliquely at plus and minus 30 degrees.
We conducted a multiple person tracking evaluation by observing a varying number
of walking subjects, denoted by m, ranging from 1 to 6. For each number of subjects, we
explored different variations, including scenarios where all subjects walked in the same
direction and cases where some subjects walked in a direction opposite to others. For
each variation, we repeated the tracking process three times to ensure reliable results.

4.3 Methodology

We conducted an evaluation of two tracking approaches: one using computer vision
with OpenPose and the other using a depth sensor with Kinect.

In the initial stage, we examined the quality of 3D skeleton data obtained from both
methods. We observed that the accuracy of 3D estimation using OpenPose might be
affected by the camera viewpoints due to the absence of depth information. On the other
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Table 1: Experimental condition

item ‘ value
date July 16, 2022
venue |gymnastic hall, Meiji University
age 20’s
population 7 (4 male, 3 female)

hand, the depth sensor method with Kinect had limitations in tracking the number of
humans due to the complexity involved in processing depth data. Consequently, the 3D
points estimated from these devices may contain erroneous data. To evaluate this, we
analyzed the occurrence of detection failures by manually classifying three randomly
sampled frames from three camera viewpoints into three categories: (a) normal, (b)
partially malfunctioning, and (c) completely malfunctioning frames. Fig. 4 provides
examples of these frames, including normal data with accurately estimated 3D points
(Fig. 4a) , partially malfunctioning frames with failed detection of a specific joint (e.g.,
left knee) (Fig. 4b), and completely malfunctioning frames (Fig. 4c) where most of the
points are incorrect.

For the analysis involving a single walking subject, we investigated a total of n
subjects captured from three viewpoints across three randomly chosen frames, resulting
in a total of 63 frames (7x3%3). In the case of multiple subjects, we examined n subjects
based on two randomly selected frames.

In the next stage, we applied the DTW human identification algorithm using 3D
time-series data as described in Section 3. By varying the number of subjects m from
1 to 6, we tested the accuracy of identification using the 3D point data obtained from
Kinect and OpenPose. The accuracy of identification was measured as the fraction of
correctly identified subjects. Additionally, we evaluated the fop-k accuracy, which is a
common performance metric used in classification tasks. The top-k accuracy measures
the proportion of correct identifications where the correct person label is among the top-
k predicted labels. In other words, if the true class label is among the k highest-ranked
persons based on the DTW distance to the given data, the tracking is considered correct.
We calculated the top-k accuracy for values of k ranging from 1 to 5.

4.4 Results

Quality of detection Table 2 shows the successful tracking rate using Kinect. It is
evident that the rate of successful tracking decreases significantly when the camera
viewpoint is not frontal. When the camera is positioned obliquely, 33% of the frames
exhibit partial malfunctions, while 19% of the frames are not utilized at all.

Table 3 shows the successful tracking rate in relation to the number of walking
individuals simultaneously. The rate of success decreases as the number of walking
persons m increases. Specifically, at m = 4, the success rate is 0.36, which is half of
the rate observed at m = 3 (0.64). It should be noted that the maximum number of
individuals that Kinect can track is specified as 6. The findings reveal that the quality of
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(a) Normal (b) partially malfunctioning (c) completely malfunction-
frames ing frames

Fig. 4: Detection failures

Table 2: successful tracking rate with regard to orientation (Kinect)

orientation success malfunctioning
partially totally
front| 1.0(21/21) 0.0(0/21) 0.0(0/21)

side| 0.48 (20/42) 0.33 (14 /42) 0.19 (8/42)
total| 0.65(41/63) 0.22 (14 /63) 0.13(8/63)

3D point detection diminishes even before reaching the specified tracking limitation of
6 individuals.

As a result, the accuracy of 3D point estimations is negatively affected when the
camera viewpoint is not frontal or when there are multiple individuals walking in dif-
ferent directions. The accuracy of person tracking, therefore, depends on these factors,
including the orientation of walking and the number of individuals being tracked.

Multiple Person Tracking Fig. 5a shows the tracking accuracy based on DTW, for
different top-k values ranging from 1 to 5. Confidence intervals are included for both
tracking approaches, Kinect and OpenPose. It can be observed that as the top-k value

Table 3: successful tracking rate with regard to population

population m|  success failure
partially totally
1 0.65(41/63)0.22 (14/63) 0.13 (8/63)
2 0.67 (8/12) 0.17(2/12) 0.17(2/12)
3 0.64(9/14) 0.29(4/14) 0.071 (1/14)
4 036(5/14) 043(6/14) 021 (3/14)
5 0.29 (4/14) 0.50(7/14) 0.21(3/14)
6 043(6/14) 029(4/14) 029 (4/14)
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—e— OpenPose
—e— Kinect

1 2 3 a 5 1 2

3 a H 6
k Number of People

(a) single (m = 1) (b) population m (top-5)

(c) top k

Fig. 5: Person tracking accuracy

increases, the accuracy for both approaches improve. Overall, the accuracy of Kinect is
superior to that of OpenPose, with a difference ranging from 0.3 to 0.2.

Fig. 5b illustrates the distribution of top-5 accuracy while varying the number of
individuals m from 1 to 6. Similar to the results obtained for 3D point quality, the
accuracy of person tracking substantially decreases with an increasing number of in-
dividuals. When comparing the accuracies of OpenPose and Kinect, the reduction in
accuracy with Kinect is more strongly influenced by the number of individuals. The
accuracy of Kinect appears to be more unstable with respect to m. Therefore, we con-
cluded that OpenPose demonstrates greater robustness in handling different numbers of
individuals, although the overall accuracy is relatively lower.

Fig. 5c shows the accuracy plot for the number of individuals, specifically for m = 2,
m =4, and m = 6. The differences in accuracy are evident when multiple people are si-
multaneously tracked using Kinect. In particular, the accuracy for m = 4 is consistently
the lowest across all top-k values. This finding provides evidence of the robustness of
OpenPose in comparison to Kinect.

4.5 Discussion

Kinect’s sensing error Through our observations, we noticed a significant decline in
tracking accuracy when using Kinect as the number of individuals increased. In Kinect,
the estimation of joint locations relies on depth information captured by the sensor.
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However, when obstructed viewpoints are encountered, the accuracy of depth measure-
ment can be compromised, resulting in missing joints. This inherent limitation leads to
difficulties in tracking multiple individuals using Kinect.

Based on the findings from our experiments, we assert that the maximum number of
individuals that can be reliably tracked using Kinect is 3, which is less than the specified
limitation according to Kinect’s specifications.

Robustness of multiple person tracking Our findings indicate that the computer vi-
sion approach, specifically OpenPose, exhibits greater robustness when considering the
number of individuals being tracked. The experiment demonstrates that the accuracy
of OpenPose surpasses that of Kinect, particularly when dealing with a larger number
of individuals. This observation aligns with the fact that the computer vision approach
possesses a higher tracking capacity, as specified by its capabilities.

However, it is important to acknowledge the limitations of our experiment. These
include the limited number of subjects involved, variations in environmental conditions
such as brightness, and the impact of obstacles on sensing accuracy. Additionally, it
should be noted that the performance of a specific device, Kinect, cannot be general-
ized to other depth sensors, as different sensors may have varying characteristics and
performance.

Privacy Concerns Privacy regulations like the GDPR [32] and the CCPA [33] strictly
forbid the collection of personal information without explicit individual consent. Gait
information is categorized as a form of personal data. Consequently, employing mul-
tiple person tracking methods based on gait information raises concerns regarding pri-
vacy regulation compliance. To harness the insights derived from tracking individuals,
it becomes imperative to adopt privacy-enhancing technologies, including techniques
such as data anonymization and obfuscation.

An illustrative approach, “VideoDP” proposed by Wang et al. [19], offers a potential
method for identifying individuals within video data by incorporating noise into statis-
tical data, ensuring the application of differential privacy principles. However, there is
a pressing need for specialized privacy-enhanced technologies tailored to the unique
characteristics of gait information.

5 Conclusions

In this study, we have examined the performance of multiple human tracking using two
approaches: OpenPose and Kinect. By employing the DTW distance metric, we have
demonstrated the feasibility of tracking multiple humans based on time-series 3D point
data. Our experimental results indicate that the depth sensor, Kinect, is capable of accu-
rately tracking multiple individuals. However, its accuracy diminishes when there are
more than three individuals walking simultaneously or when their walking orientations
differ. Consequently, we conclude that person tracking is influenced by factors such as
the orientation of walking and the number of individuals being tracked.
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As a future area of investigation, we plan to explore algorithms for large-scale hu-
man tracking. Additionally, we are interested in addressing privacy concerns arising
from this type of tracking.
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