A Poisoning-Resilient LDP schema leveraging Oblivious Transfer with the Hadamard Transform

Masahiro Shimizu and Hiroaki Kikuchi Meiji University

Backgrounds

• What is the best Emoji used in France?

LDP: Count Mean Sketch (CMS)^[Apple 2017]

- Client side ensures that data d in D is ε -differentially private.
- Server estimates frequencies over D from sketch matrix k x m.

Poisoning attack [Cao 2021]

 A set of malicious users manipulate the estimated statistics by casting fake data.

malicious

Threat Model

- MGA (Maximum Gain Attack)
- RIA (Random Item Attack)
- RPA (Random Perturbed-value Attack)

Related Works

- Countermeasures
 - Clustering
 - Outlier detection
 - Sampling and clustering
 - ZKIP Verifiable LDP
 - Oblivious Transfer

[Cao 2021] [Wu 2022] [Li 2022] [Kato 2021] [Horigome 2023]

Oblivious Transfer

 Goal: A sender (client) sends one of some values to a receiver (server) but remains oblivious as to which has been sent.

Drawback of OT

• High communication cost. The vector size increases with domain size.

Hadamard matrix

• Hadamard basis transform can be used to spread information form a sparse vector.

• After sampling uniformly from **w**, every client has one bit to be perturbed in OT protocols.

Proposed Protocol

We combines Hadamard basis with the CMS with OT.

Algorithm 3 Secure OT-HCMS

Require: $d \in D$, *n* clients, a server, parameters ϵ, k, m . **Require:** $2^{\tau} = \lfloor 1/p \rfloor$ for $p = \frac{e^{\epsilon}}{e^{\epsilon}+1}$.

- 1. same as Step (1a) in HCMS (Algorithm 1).
- 2. same as Step (1b) in HCMS.
- 3. *i*-th client prepares 2^{τ} messages of $\{-1, 1\}$ according to ϵ and performs 1-outof- 2^{τ} OT jointly with a server. The client sends $j^{(i)}$ and $\ell^{(i)}$ to the server.
- 4. The server receives $\tilde{w}^{(i)}$ through OT for i = 1, ..., n and performs Step (2a) in HCMS.
- 5. same as Step (2b) in HCMS.

Research Questions

- Q1. Is our proposed OT-based LDP robust against poisoning attack?
- Q2. How much estimation accuracy is reduced with Hamdard Transform in HCMS?
- Q3. Which is more vulnerable against poisoning attack, CMS or Hamdard CMS?
- Q4. How much time does it take for poisoning countermeasures in OT-CMS and OT-HCMS?

Experiments

- Evaluation metric for estimation accuracy : MSE
- Evaluation metric for safety : Frequency Gain

$$FG = \sum_{t \in T} E[\tilde{f}_t - \hat{f}_t]$$

- T: Set of target items
- \tilde{f}_t : Estimated value of item t after poisoning
- \hat{f}_t : Estimated value of item t before poisoning

Purchase frequency data of online shopping

Result 1. Security of proposed schemes

Result 2. Accuracy of CMS vs HCMS

Result 3. Frequency Gains

On average, CMS is 16% more vulnerable to MGA ! !

Result 4. Effect of Hamdard Transfer

Limitations

 A local differential privacy scheme is a model that does not trust the data collector, but the proposed scheme requires collaboration of the server. It may sound contractional.

	CMS[3]	HCMS[3]	OT-CMS	OT-HCMS
Accuracy (MSE)	4.76	9.03	4.76	9.03
Security (FG)	1282	1091	361	149
Communication [s]	N/A	N/A	4.6	0.07

Conclusions

- Our study has demonstrated that the conventional LDP protocol CMS is vulnerable to poisoning attacks and we have proposed a new robust OT-CMS using Oblivious Transfer.
- We have also revised OT-HCMS, where the Hadamard matrix is used to reduce communication costs.
- Our experiment showed that the proposed schemes are effective against MGA
- We plan to address the contradiction the original concept of LDP as future study.

LDP Count Mean Sketch (CMS)^[Apple 2017]

- No trust of server (true choice was hidden)
- Client perturbs secret input by himself before sending to server

