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Abstract. In recent years, Local Differential Privacy (LDP) has been
actively used to collect and utilize users’ usage history from smart de-
vices with privacy considerations. However, since LDP allows users to
add noise by themselves, Cao et al. pointed out that it is vulnerable
to poisoning attacks where malicious users can intentionally manipulate
data and send it to servers, thereby tamper with the aggregation results.
Therefore, this study examines the application of an Oblivious Transfer
(OT) protocol to the LDP protocol CMS to improve robustness against
poisoning attacks. To address the challenge that the amount of data
transmission and processing costs increase in proportion to the length of
CMS’s vector, we introduce the Hadamard Count Mean Sketch (HCMS)
utilizing the Hadamard transform. The proposed method is experimen-
tally implemented, and its security and efficiency are evaluated using
open data.

Keywords: Local Differential Privacy, Count Mean Sketch, Hadamard
Count Mean Sketch, Oblivious Transfer, Hadamard transform

1 Introduction

Increasingly, individuals are expressing concern about the extent to which their
personal data is being utilized by digital platforms without their explicit consent.
Users are becoming acutely aware of the vast amounts of personal information
collected by online platforms, ranging from their browsing history and social
media interactions to their location data and purchasing behavior. There is a
growing sense of unease about how this data is being leveraged for targeted ad-
vertising, algorithmic profiling, and other commercial purposes, often without
transparent disclosure or meaningful consent. The need to safeguard data pri-
vacy has emerged as a pressing concern for users seeking greater transparency,
accountability, and control over their digital footprint.

Local differential privacy (LDP) technology serves as a mechanism to instill
trust among users by implementing a randomized transformation of their per-
sonal data prior to its transmission to a server. This procedural step ensures that
even untrusted servers are incapable of discerning the confidential values asso-
ciated with individual users. The landscape of LDP encompasses a multitude of
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proposed schemes, including the Randomized Response [12], the PrivKV [11],
and the Google’s RAPPOR [4].

Implementing local perturbation is a viable strategy to ensure data privacy;
however, it remains susceptible to malicious actions carried out by clients. Cao et
al. [1] demonstrated that the estimated statistics derived from an LDP scheme
can be manipulated by a group of malicious clients. This presents a critical
concern that necessitates attention in the realm of data privacy. Wu et al. [9]
studied poisoning in key-value data. Huang et al. [13] proposed a anti-poisoning
measure framework, called LDPGuard, observing statistical differences.

This paper delves into the vulnerability of LDP when subjected to poisoning
attacks, offering a protocol rooted in Apple’s Count Mean Sketch (CMS) [3]
Leveraging Oblivious Transfer (OT) [5], our protocol aims to thwart malicious
clients from circumventing the randomization process. When the OT is applied
to randomized process, clients are compelled to engage in the randomization step
securely, with facilitated by a semi-honest server.

Nevertheless, OT poses a significant computational and communicational
burden, necessitating multiple public-key encryption/decryption processes per
bit of CMS vector. In this paper, to mitigate these expenses, we advocate for the
integration of the Hadamard transform into the CMS protocol, capitalizing on its
advantageous mathematical properties. The Hadamard transform exhibits uni-
form distribution of values within each row, mutual orthogonality among rows,
and the transpose of the matrix is nearly its inverse. Leveraging these character-
istics, we propose a novel LDP scheme that employs the Hadamard transform,
offering efficiencies in communication costs and robust resilience against a spec-
trum of poisoning attacks.

The contributions of our study are as follows:

1. We introduce a novel LDP scheme, termed OT-HCMS, which leverages OT
to enhance resilience against poisoning attacks.

2. We propose the utilization of the Hadamard Transform to mitigate the com-
putational and communication overhead in OT, with minimal impact on
accuracy.

3. We conduct experiments using open-data to assess the accuracy, quanti-
fied by mean estimation error, and the security against poisoning attacks,
measured by adversary frequency gains, of the OT-HCMS scheme. Our ex-
perimental findings demonstrate the efficiency of the proposed protocol in
terms of both accuracy and security.

2 Local Differential Privacy

2.1 Fundamental Definition

Let D and Z be sets of input and output values. Suppose that users periodically
submit their location data to a service provider. Differential privacy guarantees
that the randomized data do not cause any privacy disclosure from these data.
By contrast, LDP needs no trusted party in providing the guarantee. LDP is
defined as follows.
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Definition 1. A randomized algorithm Q satisfies ε-local differential privacy if
for all pairs of values v and v′ of domain D and for all subset S of range Z
(S ⊂ Z), and for ε ≥ 0, Pr[Q(v) ∈ S] ≤ eεPr[Q(v′) ∈ S].

2.2 Count Mean Sketch

Count Mean Sketch (CMS) [3] takes input of a private value d ∈ D and returns
a binary vector of length m, where typically m < |D|. Let H = {hj |hj : D →
[m], j ∈ [k]} be a set of k hash functions. Given d ∈ D, each user uniformly
chooses j-th hash functions and encodes d asm-dimensional vector v ∈ {−1, 1}m
where h(d)-th element is 1 and other m − 1 elements are −1. Each bit of v =
(v1, . . . , vm) is flipped with predetermined probability as

ṽi =

{
vi w./p. p = eε/2

1+eε/2
,

−vi w./p. q = 1
1+eε/2

.

CMS randomization algorithm is known as ε-local differentially private.
The server-side of CMS estimates frequencies for di ∈ D out of n users in the

following ways. Let S be a set of perturbed data {(ṽ(1), j(1)), . . . , (ṽ(n), j(n))}.
For each i ∈ {1, . . . , n}, server computes x̃(i) = k( cε2 ṽ

(i)+ 1
21), where cε =

eε/2+1
eε/2−1

and 1 = (1, . . . , 1). Server computes a k ×m sketch matrix M , where Mj(i),` is
sum of x̃1(i) + · · ·+ x̃m

(i) for all i = 1, . . . , n. Finally, given sketch M , the server
estimates the frequency for d ∈ D as a mean of k counts,

f̃(d) =

(
m

m− 1

)(
1

k

k∑
`=1

M`,h`(d) −
n

m

)
. (1)

2.3 Hadamard Count Mean Sketch

Let K be a power of two and HK ∈ {±1}K×K be the Hadamard matrix of size
K ×K. Let H1 = (1) and for m = 2i

Hm =

(
Hm/2 Hm/2

Hm/2 −Hm/2

)
.

The Hadamard matrices satisfies the following properties (i) The number of +1’s
in each row (except the first) is K/2, (ii) Any two rows agree on exactly K/2
locations, (iii) Rows are mutually orthogonal, and (iv) The transpose is closely
its inverse, i.e., HKH

T
K = KIK .

The Hadamard basis transform can be used to spread information from a
sparse vector where only a single element is 1. The transform is performed as
w = Hmv, where Hm is the Hadamard matrics. Hadamard Count Mean Sketch
(HCMS) is a randomization mechanism where a client send a single bit to server
without sending m− 1 redundant elements of −1, as following steps.

This algorithm also satisfies ε-local differentially private.
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Algorithm 1 Hadamard Count Mean Sketch (HCMS) [3]
Require: d ∈ D, n clients, a server, parameters ε, k,m.

1. Client-side

(a) For i ∈ {1, . . . , n}, i-th client chooses uniformly j-th hash function hj . and
sets an m-dimensional vector v = (v1, . . . , vm) where vhj(d) = 1 and vj = 0
for j 6= hj(d) ∈ [m].

(b) The client transform w = Hmv and uniformly samples `(i) ∈ [m].
(c) The client flips w`(i) with probability p = eε

eε+1
as

w̃(i) =

{
w`(i) w./p. p,
−w`(i) w./p. 1− p.

and sends tuple (w̃(i), j(i), `(i)) to server.

2. Server-side

(a) Given perturbed data (w̃(1), j(1), `(1)), . . . , (w̃(n), j(n), `(n)), a server com-
putes sketch matrix M ∈ Rk×m such that for j = 1, . . . , k and ` = 1, . . . ,m,

Mj,` =
∑

j=j(i),`=`(i)

kcεw̃
(i)

where cε = eε+1
eε−1

.
(b) The server transforms as M ′ = MHT

m for which the frequency for d ∈ D is
estimated in Eq. (1).

2.4 1-out-of-2 Oblivious Transfer

An OT is a two-party cryptographical protocol whereby a sender transfers one
of many pieces of information to a receiver, but remains oblivious as to which
of the pieces has been sent. Algorithm 2 shows a known construction [5] using
RSA encryption.

2.5 Poisoning

Wu et al. [9] proposed the following three types of poisoning attacks;

1. Maximal Gain Attack (MGA). All fake users craft the optimal fake output
of perturbed message so that both the frequency and mean gains are maxi-
mized, i.e., they choose a target item (a random key out of m targeted item)
and send the fake data to the server.

2. Random Message Attack (RMA). Each fake user picks a message uniformly
at random from the domain and sends it with according probabilities.

3. Random Input (Key-Value Pair) Attack (RIA). Each fake user picks a ran-
dom item from a given set of target item, with a designated value of 1, and
perturbs it according to the protocol.
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Algorithm 2 1-out-of-2 Oblivious Transfer[5]
Require: message m0, m1

Sender generates RSA key pair private key d, public keys N, e
Sender sends public keys to Receiver
Sender has two random message x0, x1

1. Sender sends x0, x1 to Receiver
2. Receiver chooses b ∈ {0, 1} and generates random k and computes v = (xb +
ke) mod N the encryption of k, blind with xb. Receiver sends v to Sender.

3. Sender computes k0 = (v − x0)
d mod N , k1 = (v − x1)

d and m′0 = (m0 +
k0) mod N,m′1 = (m1 + k1) mod N Sender send m′0,m′1.

4. Receiver computes mb = (m′b − k) mod N .

Ensure: mb

Wu et al. [9] proposed two methods to detect fake users, (1) one-class classifier-
based detection, where observations of multiple rounds for each user gives the
feature vector used for outlier detection, which can distinguish between genuine
and fake groups. (2) anomaly score based detection, where the anomalous behav-
ior of sending the same key in multiple rounds is detected from the frequencies of
keys in multiple rounds for each user. They reported that these defense methods
are effective when the number of targeted keys is small. However, their methods
assume that each user sends data in multiple rounds, implying that realtime
detection would not be feasible.

3 Proposed Method

3.1 Threat model

LDP schemes are vulnerable against poisoning attack that aims to manipulate
the estimated statistics. In CMS and HCMS, some probabilistic processes can
be replaced by arbitrary intentional ones.

We assume that a fraction of clients, specified as β, are malicious and con-
trolled arbitrarily as an adversary. According to the works [1], we define three
typical poisoning attacks performed by a set of malicious clients.

In LDP, a server is semi-trusted in the sense it follows a predetermined pro-
tocol but is curious about the private value sent from client. Hence, the pertur-
bation process is performed at the client side so that the server has no chance
to learn the original value.

Random Perturb Attack RPA aims to disrupt the estimation by intentionally
sending many random data so that the frequencies of items are failed to be
computed very accurately. With this attack, malicious clients send fake tuple
(w̃(i), j(i), `(i)), where w̃(i) ∈ {−1, 1}, j(i) ∈ {1, . . . , k} and `(i) ∈ {1, . . . ,m} are
chosen uniformly. All frequencies would be close to the mean.
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Random Item Attack RIA aims to have a set of target items T ⊂ D had
lower frequencies than true one. In the RIA, malicious clients choose target item
t ∈ T and follow the LDP perturbation procedures, Steps 1a–1c.

Maximal Gain Attack MGA replaces the output of LDP perturbation process
by the fake data without performing the legitimate perturbation. It aims to
maximize the frequencies of the targeted item and hence is known as highest
risk in LDP scheme.

Suppose that an adversary aims to increase the frequency of target item d.
In CMS and HCMS, there are some steps determined probabilistic ways where
malicious clients are allowed to manipulate without being detected. Potentially,
output values

1. j(i) index of hash function,
2. `(i) index of element of m-dimensional vector w,
3. w̃(i) perturbed value either 1 or −1

are vulnerable to be altered. In this work, we focus on w̃ because fake j and `
are easily detected and has smaller impact to the estimation than the manip-
ulation of w̃. Hence, we assume that malicious clients follow Step 1a and 1b
in Algorithm 1 as specified, but violate Step 1c as they like. To maximize the
privacy gain defined of the difference of estimated frequencies with and with-
out poisoning as FG =

∑
t∈T E[f̃t − f̂t], malicious clients return fake tuple

(w̃(i), j(i), `(i)) = (1, j, `) for uniformly chosen j and `.

3.2 Secure OT-HCMS

To prevent malicious clients from poisoning attacks, we explore a simple counter-
measure using an oblivious transfer. Malicious client craft w̃(i) that is inconsis-
tent with Step 1c and hj(d) or ε. Therefore, we force them to follow the protocol
based on 1-out-of-(1/p) OT protocol between client and server.

Let p = eε

eε+1 be 1/4 and w̃(i) = 1 for i-th client. The client (sender) has
messages m00,m01,m10 and m11 as 1, 1, 1 and −1, respectively. Then, the client
and a server jointly peform 1-out-of-4 OT, with randomly shuffled messages. The
server (receiver) picks b ∈ {00, 01, 10, 11} and receives one of the messages that
w is flipped with probability 1/4 as specified.

With the OT and the security of public-key crypto-system, no malicious
client has a chance to replace the output of perturbation and the semi-trusted
server learns about the client’s private value no more than a guarantee of ε-LDP.
Therefore, attacks RPA and MGA are infeasible in the OT based CMS scheme.
Adversary can perform only RIA, which has less significant impact to the the
LDP estimation than MGA does.

However, the OT protocol is expensive in both communication and computa-
tion costs. Algorithm 2 requires one public-key encryption and two decryptions
processes and the number of ciphertexts is proportional to the number of can-
didate messages, which is log(1/p). Additionally, the CMS client sends vector
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ṽ ∈ {−1, 1}m that requires running OT protocol m times, which depends on the
size of domain D. Therefore, OT-CMS is not very good idea.

Instead of the CMS with OT, we propose an OT-HCMS scheme where a
client sends one bit w̃ ∈ {−1, 1} perturbed according to the privacy budget.
Hence, we need to preserve the security of one bit. It reduces the number of OT
protocols by one and saves considerable computation and communication costs.
[3] proves that the expected value of frequency for item d is equal to that of the
true estimation, but it may suffer estimation error according to privacy budget.
In Section 4, we quantify the estimation error using some open data.

Algorithm 3 shows the procedure of our proposed secure LDP scheme.

Algorithm 3 Secure OT-HCMS
Require: d ∈ D, n clients, a server, parameters ε, k,m.
Require: 2τ = d1/pe for p = eε

eε+1
.

1. same as Step (1a) in HCMS (Algorithm 1).
2. same as Step (1b) in HCMS.
3. i-th client prepares 2τ messages of {−1, 1} according to ε and performs 1-out-

of-2τ OT jointly with a server. The client sends j(i) and `(i) to the server.
4. The server receives w̃(i) through OT for i = 1, . . . , n and performs Step (2a) in

HCMS.
5. same as Step (2b) in HCMS.

4 Evaluation

4.1 Datasets

In order to evaluate the security against poisoning and the accuracy of esti-
mation of the proposed protocol, we conduct an experiment using open-data
Click Stream[8]. It contains information on clickstream from online store offering
clothing for pregnant women. It contains 165,474 records for 14 attributes. We
use the attribute “clothing model” that has |D| = 43 distinct values. The most
frequent item (A2) is purchased 3,013 times. Fig. 1 shows the distribution of
frequencies of items in the dataset.

4.2 Methodology

Fig. 2 shows the list of default parameter used in our experiment. We apply LDP
schemes, CMS, HCMS, OT-CMS and OT-HCMS to the dataset and observe
the estimation for 50 times. In poisoning attacks, RMA, RIA and MGA, we
repeat 10 attacks targeted to the set of items A18 and A34, which are chosen as
representative items with high frequency.
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We evaluate the frequency estimation accuracy quantified in the Mean Squared
Error (MSE) and the security against poisoning attacks via the Frequency Gain
(FG) defined as FG =

∑
t∈T f̃(t)− f̂(t), where f̃(t) and f̂(t) are the estimated

frequency of item t without and with poisoning, respectively. Note that the gain
is of adversary’s viewpoint and the smaller gain implies more robust against
poisoning.

4.3 Results

(1) Utility Figs. 3, 4, 5, and Table 1 show the MSE of CMS and HCMS
with respect to privacy budget ε, vector size m (CMS) and the number of hash
functions k.

We found that the proposed HCMS estimation has slightly greater MSE
than that of CMS for all cases. The error by HCMS is 47.3% for ε = 1.0,
and is 21.7% in average, as shown in Fig.3. With varying vector size m, the
MSEs are unstable due to the uneven distribution of payment records, shown in
Fig. 4. The difference in error between with and without Hadamard transform are
relatively small with respects to the number of hash function k (Fig. 5). Overall,
we estimate frequencies in the HCMS with reduced communication overhead but
with the reduced accuracy.

(2) Frequency Gains Figs. 6, 7, and 8, Tables 2, 3, and 4 show FGs with
respect to privacy budgets ε, malicious client rates β, and the numbers of targeted
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Table 1. MSEs in frequency estimation (×103)

ε CMS HCMS

0.1 604.66 407.07
0.4 12.78 22.63
0.8 5.37 8.43
1.0 4.76 9.03
2.0 3.69 5.26

m CMS HCMS

64 4.27 6.16
128 5.36 7.64
256 4.70 5.23
512 4.79 5.97

1024 3.52 5.38

k CMS HCMS

64 613.03 596.29
128 162.13 151.32
256 35.22 35.89
512 14.07 15.34

1024 3.68 5.81

0.1 0.4 0.8 1.0 2.0

0

2000

4000

6000

8000

10000

FG

CMS MGA
CMS RIA
CMS RPA
HCMS MGA
HCMS RIA
HCMS RPA

Fig. 6. FG with respect to
ε

0.01 0.02 0.04 0.08 0.10

0

2000

4000

6000

8000

10000

12000

14000

FG

CMS MGA
CMS RIA
CMS RPA
HCMS MGA
HCMS RIA
HCMS RPA

Fig. 7. FG with respect to
malicious rate β

1 2 4 8 16
r

0

5000

10000

15000

20000

FG

CMS MGA
CMS RIA
CMS RPA
HCMS MGA
HCMS RIA
HCMS RPA

Fig. 8. FG with respect to
# target items r

items r, respectively. We quantify the resiliences of CMS and HCMS against three
kinds of poisoning, including MGA, RIA and RPA. Note that smaller FG means
better robustness against attacks.

First, we note that MGA gives the greatest gain (FG) for three attacks, for
any parameters ε, β, and r. From Table 2, RPA of CMS is 2.5 at ε = 1.0, which
is almost half of RPA (FG = 5.08), which is almost half of MGA (FG = 12.82).
Similar effect can be seen for HCMS. It makes sense because of the definition
of poisonings. Second, we found that FGs of HCMS are always smaller (16.0%
in average) than that of CMS. This holds for all conditions of ε, β, and r.
The difference between CMS and HCMS becomes maximum when MGA was
performed. The HCMS reduces the gain of adversary by 21 (β = 0.1 in Table 3),
which is about 15% of CMS. The possible reason why the robustness is improved
in HCMS is that the Hadamard transform works the distribution of affected
elements widely in all elements. Third, the differences in FG between CMS and
HCMS varies with attacks.

(3) Security Improvement by OT We focus on the robustness enhancement
given by the OT. Figs. 9 and 10 shows the distributions of mean FGs of CMS and
OT-CMS, HCMS and OT-HCMS with respect to the fraction of malicious clients
β. Obliviously, the OT protocol helps reducing adversary’s gains significantly.
Table 5 shows the mean FGs, where the improvement of security (FGs) ranges
51% – 75% for CMS and OT-CMS, and 47% – 58% for HCMS and OT-HCMS.
With OT, malicious client is not able to skip perturbation process and the MGA
is eventually reduced to the RIA attack.
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Table 2. FG(×102) with respect to privacy budget ε

RPA RIA MGA
ε CMS HCMS CMS HCMS CMS HCMS

0.1 2.51 0.53 6.01 4.46 103.70 101.24
0.4 2.47 0 4.27 5.17 27.87 25.58
0.8 2.40 −0.08 4.99 4.98 15.31 13.28
1.0 2.50 −0.05 5.08 5.00 12.82 10.91
2.0 2.50 −0.08 5.03 5.04 7.96 6.60

Table 3. FG(×102) with respect to the fraction of malicious client β

RPA RIA MGA
β CMS HCMS CMS HCMS CMS HCMS

0.01 2.51 0.04 5.18 5.01 12.82 10.91
0.02 5.03 −0.05 10.19 10.21 25.92 22.06
0.04 10.28 −0.24 20.52 20.73 52.91 45.03
0.08 21.39 −0.40 43.15 43.18 110.44 93.99
0.10 27.67 −0.43 55.19 55.30 141.11 120.09

4.4 Discussion

According to the experimental results, we confirm that the effect of Hadamard
transform reduces the communication overhead required for mitigation of poi-
soning. In Table 6, we summarize the accuracy, the security and the communi-
cation cost of the proposed protocol (OT-HCMS) in comparison with the con-
ventional one (CMS[3]). We show the representative parameter for poisoning
(MGA, ε = 1.0, β = 0.1, m = 26 ).

We observe that the proposed OT-HCMS is secure against poisoning and
reduces the adversarial gain (FG) about 10-times to that of plain CMS and
HCMS. The cost of security enhancement is the increase of error (MSE), which is
almost double of the CMS without Hadamard transform. However, the accuracy
can be improved with the increase of number of client and it is not critical in
practice.

Table 4. FG(×102) with respect to the number of targeted items r

RPA RIA MGA
r CMS HCMS CMS HCMS CMS HCMS

1 2.50 −0.01 4.93 5.04 12.82 10.91
2 4.99 −0.17 5.09 5.07 25.64 21.82
4 10.02 −0.02 4.95 4.84 51.28 43.64
8 20.20 0.25 4.89 4.29 102.55 87.27

16 39.77 −0.58 5.10 4.56 205.11 174.54
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Table 5. FGs of OT-CMS and OT-HCMS
with respect to β

β CMS OT-CMS HCMS OT-HCMS
0.01 38.30 18.56 32.60 17.15
0.02 76.61 30.59 65.19 38.75
0.04 158.33 59.70 134.73 65.34
0.08 331.97 129.44 282.51 135.75
0.10 423.90 156.07 360.74 148.91

We also note that the Hadamard transform does not only contribute to save
the communication, but also helps the reduction of FG from CMS (see FG 361
(OT-CMS) and 149 (OT-HCMS) in the Table 6). This is because that it works
sampling uniformly over the transformed domain and estimates from mixed data
sent from all (benign and malicious) clients. This could help somehow reducing
robustness against poisoning.

5 Conclusions

We have studied a security enhancement of LDP protocol against the variety
of poisoning attacks. The proposed scheme forces clients to join an oblivious
transfer to perform value perturbation process according to the predetermined
probability so that no malicious client skip the randomization step. We applied
the Hadamard transform to the baseline protocol, the Count Mean Sketch, to

Table 6. Comparison

CMS[3] HCMS[3] OT-CMS OT-HCMS

Accuracy (MSE) 4.76 9.03 4.76 9.03
Security (FG) 1282 1091 361 149

Communication [s] N/A N/A 4.6 0.07
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save the computational cost required for public-key encryption and the commu-
nication cost linear to the vector size by one. Our experiment using open-data
demonstrate that the proposed protocol reduces the adversary’s gain (FG) 47%
– 58%, that is, it is robust against poisoning.

Our future studies include a security improvement for variety of DP schemes,
an advanced scheme to mitigate other malicious behaviors performed at both
client and server, and a new scheme to detect poisoning in shuffle model.
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