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Abstract This paper studies the local differential privacy (LDP) algorithm
for key-value data that are pervasive in big data analysis. One of the state-
of-the-arts algorithms, PrivKV, randomizes key-value pairs with a sequence
of LDP algorithms. However, maximum likelihood estimation fails to esti-
mate the statistics accurately when the frequency of the data for particular
rare keys is limited. To address the problem, we propose the expectation-
maximization-based algorithm designed for PrivKV. Instead of estimating
continuous values [−1, 1] in key-value pairs, we focus on estimating the inter-
mediate variable that contains the encoded binary bit ∈ {1,−1}. This makes
the problem tractable to estimate because we have a small set of possible
input values and a set of observed outputs. We conduct some experiments
using some synthetic data with some known distributions, e.g., Gaussian and
power-law and well-known open datasets, MoveLens and Clothing. Our ex-
periment using synthetic data and open datasets shows the robustness of
estimation with regards to the size of data and the privacy budgets.

1 Introduction

A key-value is a primitive data structure used for many applications and is
pervasive in big data applications such as mobile app activity analysis. If we
can collect daily usage data of smartphone apps, the data can be applied
for optimizing battery management, personalized services, digital contents
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delivery and prediction diseases for healthcare. However, daily active usage
is confidential data, and many people deny access to their personal data.

Local differential privacy (LDP) is a state-of-the-art private data anonymiza-
tion mechanism. Erlingsson et al. at Google proposed a LDP algorithm [6]. It
has been deployed by major platformers including Apple[7], Google[6], and
Microsoft [8]. Variation of LDP schemes have been studied in order to expand
the domain of LDP applications. Ye et al. [4] proposed the key-value data
collection mechanisms that can satisfy LDP and estimate the key frequencies
and the mean values from the sophisticatedly randomized key-value pairs.
Their algorithm combines two LDP mechanisms known as primitives, the
Randomized Response (RR) for keys [2] and the Value Perturbation Primi-
tive (VPP) [3] for values. PCKV [14] is also proposed to collect the key-value
pairs in an LDP manner.

The estimation accuracy is a one of current issues in LDP schemes. The
size of users is also known as one of the factors to determine the estimation ac-
curacy. The more perturbed key-value pairs, the more accurate the estimate.
Most LDP algorithms, e.g., RAPPOR and PrivKV, estimate the statistics by
solving the expected relationship between the observed randomized value and
the true statistics. It is estimated by means of a single point of expected value
of randomized output, which is a kind of Maximum Likelihood Estimation
(MLE). Therefore, it suffers lower estimation accuracy when many values are
randomized far from the theoretical expected value.

In order to address the lower estimation accuracy when the frequency is
limited, we propose an iterative approach to improve the estimation accuracy
of perturbed data in the LDP algorithm. Our idea is based on Bayes’ theorem
and the Expectation-Maximization (EM) algorithm[10]. The iterative process
updates the posterior probabilities so that the all elements are consistent with
the given observed data. Hence, it is more stable and more robust than the
data that contain values for rear keys. However, it is not trivial to apply the
EM algorithm to PrivKV because of its sequential combination of randomized
key and continuous value v ∈ [−1, 1]. Instead of näıvely estimating v, we
attempt to estimate the probability of intermediate values v+ ∈ {1,−1} in
randomizing process of PrivKV. It makes the problem simple and tractable.

We conducted some experiments using synthetic data with some known
distributions, e.g., Gaussian and Power-law. Then, we compared our proposed
algorithm with PrivKV and PrivKVM (three iterations with responders)[4]
to explore the accuracy improvement in terms of privacy budget ε and the
number of responders n. We also evaluate the estimation accuracy using some
open datasets, MovieLens and Clothing. It demonstrates that the proposed
scheme performs well in general cases.

Our contribution are as follows.

• We propose a new algorithm to estimate the key frequencies and the mean
values in key-value data that randomized in local differential private algo-
rithm PrivKV (Section 3).
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• The experimental results using synthetic data with three major probabil-
ity distributions Gaussian, power-low and linear, and well-known open
datasets, MovieLens and Clothing, demonstrate that our proposed al-
gorithm overperforms state-of-the-art LDP schemes in estimation of fre-
quency and mean value. Our experiment using synthetic data shows the
robustness of estimation with regard to the size of data and the privacy
budgets (Section 4).

Our paper is organized as follows. In Section 2, we provide some necessary
fundamental definitions of LDP and the baseline estimation algorithms. In
Section 3, we propose our algorithm and prove useful property in estimation
of frequency and mean values. We report our experiments using synthetic
and open data in Section 4. Our experiments show that the performance and
the efficiency of the proposed algorithm in comparison to the existing LDP
schemes. Section 5 shows some related works in this study. We conclude our
study in Section 6.

2 Local Differential Privacy

2.1 Fundamental Definition

Suppose that users periodically submit their location data to a service
provider. Differential privacy guarantees that the randomized data do not
reveal any privacy disclosure from them. By contrast, LDP needs no trusted
party. LDP is defined as follows.

Definition 1. A randomized algorithm Q satisfies ε-local differential privacy
if for all pairs of values v and v′ of domain V and for all subset S of range Z
(S ⊂ Z), and for ε ≥ 0, Pr[Q(v) ∈ S] ≤ eεPr[Q(v′) ∈ S].

2.2 PrivKV

Multidimensional data are one of the big challenges for perturbations. Several
randomization mechanisms with LDP have been proposed so far.

Ye et al. [4] addressed the issue using two variables that are perturbed ac-
cordingly in their proposed LDP algorithm, PrivKV. PrivKV takes inputs in
the form key-value data, two-dimensional data structure of discrete (key) and
continuous (value) variables, and estimates the key frequencies and the mean
values. Their idea combines two LDP protocols, RR for randomizing keys
and VPP for perturbing values. The dimension is restricted to two, but the
key-value is known as a primitive data structure commonly used for several
applications. For example, a movie evaluation dataset consists of ratings for
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movies, which are stored in a key-value database in which keys are movie titles
and the values are ratings for titles. In a smartphone survey, users indicate
their favorite apps such as 〈YouTube, 0.5〉, 〈Twitter, 0.1〉, 〈Instagram, 0.2〉,
by stating their total time using those apps.

Let Si be a set of key-value tuple 〈k, v〉 owned by i-th user. In PrivKV, the
set of tuples is encoded as a d-dimensional vector, where d is the cardinality
of the domain of keys K and missing key is represented as 〈k, v〉 = 〈0, 0〉.
For instance, a set of key-value Si = {〈k1, v1〉, 〈k4, v4〉, 〈k5, v5〉} is encoded as
d = 5 dimensional vector Si = (〈1, v1〉, 〈0, 0〉, 〈0, 0〉, 〈1, v4〉, 〈1, v5〉) where keys
k1, k4 and k5 are specified implicitly with 1 at the corresponding location.

Perturbation in PrivKV is performed by random sampling one element
〈ka, va〉 from Si. It has two proceeding steps, perturbing values and keys. It
uses VPP used in Harmony[3] for the chosen tuple. A value of the tuple 〈1, va〉
is replaced by v+a = V PP (va, ε2), where ε2 is a privacy budget for values. A
value of the “missing” tuple 〈0, 0〉 is replaced by v+a = V PP (v′a, ε2), where
v′a is chosen uniformly from [−1, 1].

It uses RR with privacy budget ε1. A tuple 〈1, va〉 is randomized as

〈k∗a, v+a 〉 =

{
〈1, v+a 〉 w/p p1 = eε1

1+eε1 ,

〈0, 0〉 w/p q1 = 1
1+eε1 ,

where v+a is perturbed as mentioned. A “missing” tuple 〈0, 0〉 is randomized
as

〈k∗a, v+a 〉 =

{
〈0, 0〉 w/p p1 = eε1

1+eε1 ,

〈1, v+a 〉 w/p q1 = 1
1+eε1 .

Responder in PrivKV submits the perturbed tuple 〈k∗a, v+a 〉 with the index a
of the tuple.

3 Proposed Algorithm

3.1 Idea

The drawback of PrivKV and PrivKVM is their low estimation accuracy.
Because PrivKV uses the MLE of frequencies and means, the estimate ac-
curacy reduces when the values are not uniformly distributed or sparse data
are given. An iterative approach like PrivKVM consumes a privacy budget
for every iteration, and the optimal assignment is not trivial.

MLE used in PrivKV works well for some cases but has low estimate
accuracy for a biased distribution. Instead, we attempt to address this limi-
tation by using an iterative estimate approach known as the EM (EM) algo-
rithm. Because EM estimates posterior probabilities iteratively so that the
estimated probabilities are more consistent with all observed values, it can
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improve accuracy when the number of users n increases and many observed
data are given. However, it is challenging to estimate exact continuous value
v ∈ [−1, 1]. Instead of estimating v directly, we focus to estimate the en-
coded v in binary, v+ ∈ {1,−1}. It is tractable to estimate because we have
a small set of possible value of input as X = {〈1, 1〉, 〈1,−1〉, 〈0, 1〉, 〈0,−1〉}
and a set of observed output Z = {〈1, 1〉, 〈1,−1〉, 〈0, 0〉}. Estimated marginal
probability of X allows the mean values to be estimated accurately.

3.2 EM Algorithm for PrivKV

EM algorithm performs an iterative process for which posterior probabilities
are updated through Bayes’ theorem[10]. Each iteration estimates the best
probabilities θj for all possible values in a domain. First, we show the EM
algorithm generally and then modify it for PrivKV.

LetX = {x1, . . . , xd} be a set of input values and Z = {z1, z2, . . . , zd′} a set
of output values. A responder owning private value xi ∈ X uses a randomized
algorithm to output zi ∈ Z. Given n observed values z1, . . . , zn, we iterate es-
timating posterior probabilities for x1, . . . , xd as Θ(t) = (θ1

(t), θ2
(t), . . . , θd

(t))
until converged. We start iteration with the initialized values assigned to
probabilities uniformly as Θ(0) = ( 1

d ,
1
d , . . . ,

1
d ).

The conditional probability of input xi given output zj is given as

Pr[zj |xi] =
Pr[zj ,xi]
Pr[xi]

. Bayes’ theorem gives the posterior probability of X = xi

given zj as Pr[xi|zj ] =
Pr[zj |xi]Pr[xi]∑|X|
s=1

Pr[zj |xs]Pr[xs]
. By letting θ

(t−1)
i = Pr[xi] be the

(t − 1)-th estimate of marginal probability of xi ∈ X, we have the t-th esti-
mate of conditional probability for the u-th responder who responds zu ∈ Z
as

θ̂
(t)
u,i = Pr[xi|zu] =

Pr[zu|xi]θi(t−1)∑|X|
s=1 Pr[zu|xs]θs

(t−1) , (1)

which follows the t-th estimate of marginal probability by aggregating all n

estimates of responders as, θ(t) = 1
n

∑n
u=1 θ̂

(t−1)
u . This process iterates until

updating converges as |θi(t)−θi(t−1)| ≤ η, where η is predetermined precision.
In PrivKV, a randomization of tuple 〈k, v〉 is performed in sequential al-

gorithms. A value v ∈ [−1, 1] is encoded into v∗ ∈ {−1, 1} in a probability
depending on v. Then, it is randomized as v+ in RR(v∗, ε2) (a part of VPP)
using probabilities p2 = (eε2)/(1 + ε2), and q2 = 1/(1 + ε2) = 1− p2. Finally,
it is randomized in RR(v∗, ε1) using probabilities p1 = (eε1)/(1 + ε1), and
q1 = 1/(1+ε1) = 1−p1, as a part of key randomization. Hence, if we perturb
a given tuple 〈k, v+〉 = 〈1, 1〉 in PrivKV, the output 〈k∗, v∗〉 = 〈1, 1〉 is ob-
served with probability p1p2 as the consequence of V PP and RR. Similarly,
another tuple happens
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Table 1 Conditional probabilities of observed tuple Z given tuple X

X = 〈k′ , v+〉 Z = 〈k∗ , v∗〉 Pr[z|x]

1 1 1 1 p1p2
1 1 1 −1 p1q2
1 1 0 0 q1(p2 + q2)

1 −1 1 1 p1q2
1 −1 1 −1 p1p2
1 −1 0 0 q1(p2 + q2)

X = 〈k′ , v+〉 Z = 〈k∗ , v∗〉 Pr[z|x]

0 1 1 1 q1p2
0 1 1 −1 q1q2
0 1 0 0 p1(p2 + q2)

0 −1 1 1 q1q2
0 −1 1 −1 q1p2
0 −1 0 0 p1(p2 + q2)

〈k∗, v∗〉 =

 〈1, 1〉 w/p p1p2,
〈1,−1〉 w/p p1q2,
〈0, 0〉 w/p q1(p2 + q2).

Thus, we have the conditional probability Pr[z1 = 〈k∗, v∗〉 = 〈1, 1〉|x1 =
〈k′, v+〉 = 〈1, 1〉] is p1q1. Other conditional probabilities are given in Table 1.

Using these probabilities with Bayes’ theorem, we have the posterior prob-
ability of input variable x1 being 〈1, 1〉 given observed z1 as follows:

Pr[x1|z1] =
Pr[z1|x1]Pr[x1]∑4
s=1 Pr[z1|xs]Pr[xs]

=
Pr[z1|x1]θ1

(0)∑4
s=1 Pr[z1|xs]θs

(0)

=
1
4p1p2

1
4p1p2 + 1

4p1q2 + 1
4q1p2 + 1

4q1q2
= p1p2 =

eε1eε2

(1 + eε1)(1 + eε2)
.

With privacy budgets ε1 = ε2 = 1/2 and ε = ε1 + ε2 = 1, we estimate θ̂
(1)
1,u ≈

0.387455. Posterior probabilities for input x2 = 〈1,−1〉, x3 = 〈0, 1〉, x4 =
〈0,−1〉 can be computed similarly.

3.3 Frequency and Mean Estimation

After the EM algorithm estimates the marginal probabilities for binary vector
v+a , we need to identify the key frequency and mean values in the original
key-value data. To estimate these quantities, we show the following property.

Theorem 1 (frequency and mean). Let Θ(t) = (θ
(t)
〈1,1〉, θ

(t)
〈1,−1〉, θ

(t)
〈0,1〉,

θ
(t)
〈0,−1〉) be marginal probabilities of the binary-encoded tuples 〈k∗a, v+a 〉 in

PrivKV. Then, the expected values for the frequency for key ka and the mean
values are

f̂a = n
(
θ
(t)
〈1,1〉 + θ

(t)
〈1,−1〉

)
, m̂a =

θ
(t)
〈1,1〉 − θ

(t)
〈1,−1〉

θ
(t)
〈1,1〉 + θ

(t)
〈1,−1〉

. (2)
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Algorithm 1 EM algorithm for PrivKV
S1, . . . , Sn ← key-value data for n responders.

for all u ∈ [n] do sample a tuple 〈k′a, v′a〉 from a vector Si

v+a ← V PP (v′a, ε2) and k∗a ← RR(k′a, ε1)

end for

Θ(0) ← a uniform probability for X = {〈1, 1〉, 〈1,−1〉, 〈0, 1〉, 〈0,−1〉}.
repeat(E-step)

t← 1
Estimate posterior probability Pr[Vi = 1|Zi] in Eq. (1).

(M-step) Update marginal probability θ
(t+1)
i .

until |θ(t+1)
i − θ(t)i | ≤ η

for all a ∈ K do estimate
Estimate f̂a and m̂a in eq. 2.

end for return f̂1, m̂1, . . . , f̂d, m̂d

If we have an accurate estimation of marginal probabilities via the EM algo-
rithm, the theorem means that we can estimate the frequency and the mean
as well.

Algorithm 1 shows the overall processes in the proposed EM algorithm for
estimating frequency and mean for key-value data.

4 Experiment

4.1 Objective

The objective of the experiment is to explore the accuracy improvement in
terms of privacy budget ε and the number of responders n. Using synthetic
data with some common distributions, we compare our proposed algorithm
with some conventional ones.

4.2 Data

We use some synthetic data and open datasets for our analysis. For synthetic
data, we generate keys and values according to three known probability dis-

tributions, Gaussian (µ = 0, σ = 10) power-law (F (x) = (1 + 0.1x)
− 11

10 ), and
linear (F (x) = x). Table 2 shows the mean and the variance of frequency fk
for key and mean fk for values, where the number of users is n = 105.

Table 3 shows the specifications of open datasets used for our analysis.
Both datasets have a large number of items, e.g., movie titles and clothe
brands. Hence, the use-item matrices are sparse. The values of ratings are
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Table 2 Statistics of the synthetic data (# responders

n = 105, and # keys d)

model E(fk/n) V ar(fk/n) E(mk) V ar(mk)

Gaussian 0.49506 0.10926 −0.00987 0.43702

Power-low 0.20660 0.062901 −0.58681 0.25160
Linear 0.51 0.08330 0 0.34694

Table 3 Open datasets

item MoveiLens[15] Clothing[16]

# ratings 10,000,054 192,544
# users 69,877 9,657

# items 10,677 3,183
value range 0.5 – 5 1 – 10

Table 4 MSE(f)[×10−4] with regard to ε

Gauss Power-Law Linear
ε EM PrivKV PrivKVM EM PrivKV PrivKVM EM PrivKV PrivKVM

0.1 756.682 1921.743 1472.772 671.251 2170.253 1851.214 602.837 1885.284 1462.740

0.5 63.996 84.629 75.394 55.478 84.833 62.403 70.346 92.988 82.795
1 18.076 22.588 26.213 18.579 19.274 23.183 16.023 20.174 18.440

3 2.018 2.324 2.508 1.591 2.587 2.420 2.523 2.790 2.597
5 1.147 1.320 1.173 0.973 1.019 0.992 1.283 1.429 1.280

distribute normally and the frequency of items follows power-law distribu-
tions. Therefore, the synthetic data are models of the real open data.

4.3 Method

We perform the proposed and the conventional algorithms PrivKV and
PrivKVM to estimate the key frequency f̂k and the mean values m̂k of given
n-responder synthetic data. The mean errors for key and value are evaluated

by Mean Square Error (MSE) defined asMSE(f) = 1
|K|
∑|K|
i=1

(
f̂i
n −

fi
n

)2
,MSE(m) =

1
|K|
∑|K|
i=1 (m̂i −mi)

2
, where fi and mi are true statistics. We repeat the mea-

surements for 10 times and take the mean.

4.4 Results

4.4.1 Privacy Budget ε

Table 4 shows the MSE of frequency estimation of synthetic data generated in
Gaussian, Power-low and Linear distributions. We use the MSE with regard
to the privacy budget ε ranging from 0.1 to 5, the number of responders
n = 105, and the number of keys d = 50.

The estimation accuracy of the proposed EM algorithm overwhelms the
conventional PrivKV and PrivKVM for all distributions and all privacy bud-
gets. The improvement is significant for ε = 0.1, and the MSE of EM algo-
rithm is 602.83 · · · 10−4 (41% of PrivKVM).
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Figures 1, 2, and 3 show the MSE of mean estimations of synthetic data
generated in Gaussian, Power-low, and Linear distributions, respectively. The
proposed EM algorithm (blue) has the smallest MSE for all algorithms and
all cases. The accuracy is improved well as the privacy budget ε increases.

We show the estimated mean distributions for keys synthesized in Gaus-
sian, Power-law and Linear distribution, in Fig. 4, 5, and 6, respectively. We
find that PrivKV suffers large estimation errors for both edges in Fig. 4,
where the frequencies of values are less than that of the center. MLE is not
robust when not enough samples are given, whereas EM performs well for
even small samples by iterative processes.

Figures 7 and 8 shows the distribution of MAE of frequency of items and
that of mean values in the MovieLens dataset[15], respectively. Similarly,
the MAEs of frequency and mean values in the Clothing datasets[16] are in
Figures 9 and 10, respectively.
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Table 5 MSE(f) [(×10−4)] with regard to n

Gauss Power-Law Linear
n[104] EM PrivKV PrivKVM EM PrivKV PrivKVM EM PrivKV PrivKVM

1 476.259 527.912 612.903 346.709 543.281 424.728 404.467 538.943 733.468

5 107.263 110.045 137.269 72.823 99.442 95.245 89.922 118.344 113.040
10 36.087 51.430 62.515 39.235 51.116 62.976 54.166 69.999 56.959

100 4.636 4.766 6.249 4.876 5.498 5.254 5.619 7.404 6.158
1000 1.410 1.597 1.556 0.760 1.181 1.094 0.974 1.493 1.041
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(Linear)

All results show that the proposed ME algorithm estimate the frequencies
and the means the most accurately. The improvements of accuracy by the
EM estimation are consistent with the results of the synthesized data.

4.4.2 Number of Responders

We evaluate the estimation error with regard to the number of responders
(users). We estimate with the fixed privacy budget ε = 2 and the number of
keys d = 50 for the number of users from 104 to 30 · 104.

Table 5 shows the MSE for frequency estimation of synthetic data gen-
erated in Gaussian, Power-law, and Linear distributions. The EM algorithm
has the smallest MSE for all algorithms and all distributions regardless of
the number of users. The larger, the less error in general. The estimate im-
provement is significant when smaller data such as n = 104 are used. With
the result, the EM should be used for the use case where a confidential and
rare data are sampled, such as epidemiological study of rare diseases.

Figs. 11, 12, and 13 show the distribution of MAE for means with regard
to the number of responders n, of the synthetic data generated in Gaussian,
Power-law, and Linear distributions, respectively. Similar to the frequency
estimation, the EM algorithm always outperforms than any other algorithm
for all estimations and distributions. For example, the accuracy improves
31.6% in the Gaussian distribution where there are many less-frequent keys.
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5 Related Works

The idea to preserve the privacy of input with randomization has been stud-
ied so far. Agrawal and Srikant [13] proposed a privacy-preserving collabo-
ration filtering and an estimation algorithm based on Bayes’ theorem, called
reconstruction.

Chen et al. [12] proposed the notion of LDP to provide a privacy guarantee
for the user. Compared with the conventional differential privacy studies,
LDP has been used for many real-world applications. For example, Erlingsson
et al. introduced RAPPOR [6] to use a Bloom filter to encode input as a bit
of a vector.

Ren et al. proposed a multidimensional joint distribution estimation algo-
rithm that satisfies LDP[11]. Their proposed method is also based on the EM
and Lasso regression. They reported the experimental results on real-world
datasets and showed that the proposed algorithm outperforms the existing
estimation schemes such as support vector machine and random forest clas-
sifications.

Gu et al. [14] proposed a locally differentially private key-value data col-
lection that utilizes correlated perturbation. Their protocol uses an advanced
Padding-and-Sampling with two primitives, PCKV-UE (Unary Encoding)
and PCKV-GRR (Generalized Randomized Response) to improve the accu-
racy of mean estimation and does not require further interaction between
responders and collector.

6 Conclusion

We study the LDP algorithms for key-value data that estimate the key fre-
quencies and the mean values. We propose an algorithm based on the EM
algorithms to improve the estimation data accuracy perturbed in the LDP
algorithms PrivKV and PrivKVM. Our proposed algorithm estimates the
marginal probability of variable X that is a tuple of binary-encoded keys and
values and hence can reduce the conditional probabilities needed for itera-
tive processes. With some synthetic data generated in Gaussian, Power-low,
and Linear distributions, we conduct experiments that show the proposed
estimation has higher accuracy than the PrivKV algorithm. The estimate is
robust for privacy budgets. The improvement was 69.5% on average when
the number of responders was n = 104 with ε = 0.1.

Major open datasets, MovieLens (10,000,000 records) and Clothing (192,000
records), are used to ensure the performance of the propose algorithm as es-
timated in the synthetic data. The experimental results confirm that the
proposed EM algorithm outperforms any of state-of-the-art LDP schemes,
PrivKV and PrivKVM, for all privacy budgets and for both of key frequen-
cies and mean values. The improvement in estimation is especially significant
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when small privacy budget is used for randomization (strong privacy level).
The EM algorithm estimates the mean well even when the frequency of the
key-value record is limited. Hence, we conclude that the proposed EM al-
gorithm is appropriate for private data analysis in epidemiological purposes
that requires dealing with rare decease.

For future works, we plan to compare the utility improvement with
PCKV[14], the latest version of PrivKV family which improves accuracy
without expensive iterations incurred by PrivKVM.
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