
DICOMO 2022

key-valueデータにおける局所差分プライバシアルゴリズムPrivKVの改良

堀込光, 菊池浩明(明治大学)

Chia-Mu Yu (National Yang Ming Chiao Tung University)

もののけ姫

NETFLIX

• •

千と千尋の 神隠し

2位

タイタニック

★4.1

3位

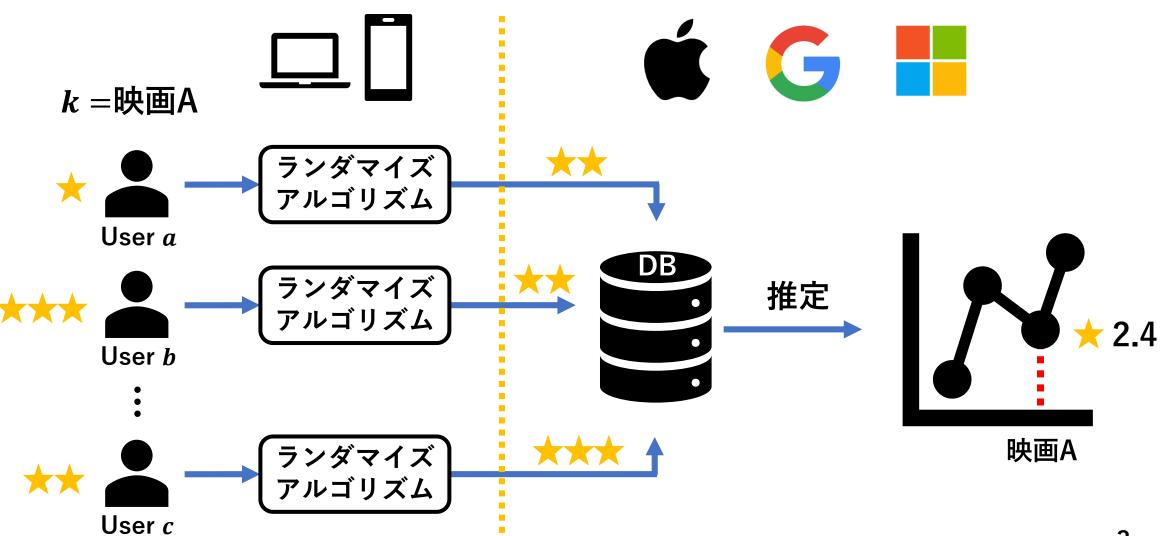
アナと雪 の女王 **★3.8**

君の名は。

"B"は「もののけ姫」と 「タイタニック」 を見ており, 高く評価している

タイタニック

アナと雪 の女王


千と千尋の 神隠し **

局所差分プライバシー(LDP)

先行研究: PrivKV (1. 摂動)

key-valeデータ

k	\boldsymbol{v}	サンプリン:	グ < k. v >		
千と千尋の神隠し	2	< 君の名に			
タイタニック	*			ノ 出力	
アナと雪の女王	*			k^*	
君の名は。	4	PrivKV	a	(フラグ)	v^+
もののけ姫	3	TIVICO	君の名は。	1	-1

$$a=$$
 "君の名は。" VPP (valueのランダマイズ) RR(keyのランダマイズ) $< k_a', v_a' > \rightarrow v_a'$ の 2 値化 $\rightarrow < k_a', v_a^* > \rightarrow RR(v_a^*)$ $\rightarrow < k_a', v_a^+ > \rightarrow RR(k_a')$ $\rightarrow < k_a', v_a' > \rightarrow RR(k$

先行研究: PrivKV (2. 推定)

MLE (Maximum Likelihood Estimation)

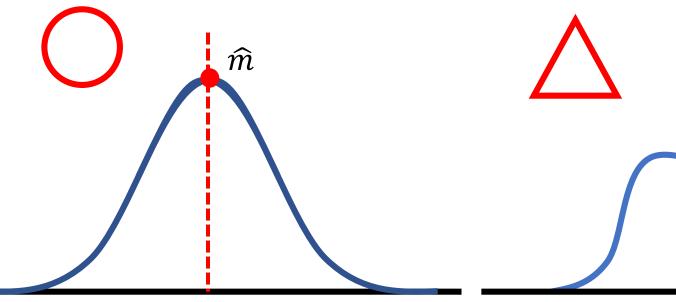
集計(a=君の名は。)

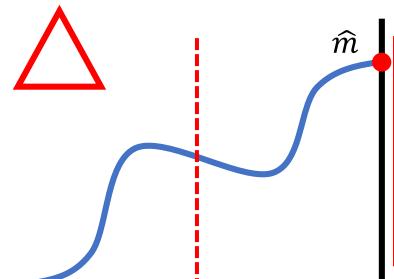
	$oldsymbol{k_a^*}$	v_a^+			
u_1	1	-1			
u_3	0	0			
u_{20}	1	1			
• •					
u_{51}	1	1			
u_{77}	0	0			

平均值推定

$$n_1' = count(v_a^+ = 1)$$
 $n_2' = count(v_a^+ = -1)$ $N = n_1' + n_2'$ $L(\hat{n}_1) = \frac{N(p_2 - 1) + n_1'}{2p_2 - 1}$ $L(\hat{n}_2) = N - \hat{n}_1$ $E(n_1') = n_1 p_2 + n_2 (1 - p_2)$ $\widehat{m}_a = \frac{n_1 - n_2}{n_1 + n_2}$

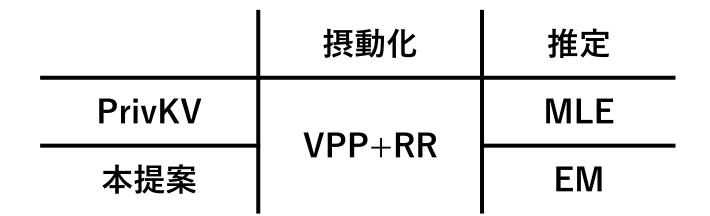
k	v
君の名は。	*


VPP (valueのランダマイズ)

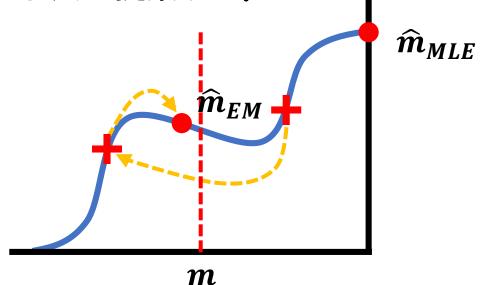

MLEの問題点
$$\langle k'_a, v'_a \rangle \rightarrow v'_a$$
の2値化 $\rightarrow \langle k'_a, v^*_a \rangle \rightarrow RR(v^*_a) \rightarrow \langle k'_a, v^*_a \rangle$

$$<0,0.4> \rightarrow v_a'$$
の2値化 $\rightarrow <0,-1> \rightarrow RR(-1)\rightarrow <0,-1>$

$< k'_{a}, v'_{a} > = < 0, random[-1, 1] >$


評価者の少ない
$$key$$
の遷移 $< k, v> < k_a^*, v_a^+>$ $<$ $<$ $>$ $<$ $>$ $<$ $>$ $<$ $>$ $<$ $> $>$ $<$ $> 1,1 > or $<$ $>$ $>$ $>$$$

 $v_q^+ = v_q^*$ であるか $\boldsymbol{v}_{\boldsymbol{a}}^{+} = -\boldsymbol{v}_{\boldsymbol{a}}^{*}$ であるか の推定を考えており, *v*= * を考慮して いない。


研究概要

•解決手法

PrivKVにEM(Expectation Maxmization)アルゴリズム[宮川雅巳,1987]

を適用し、推定する手法を提案する.

提案手法

EM(Expectation Maximization)アルゴリズムの適用

摂動の流れ

```
a = "君の名は。"
                                                                                                                              VPP (valueのランダマイズ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               kevのランダマイズ
< k_a', v_a' > \rightarrow v_a' の2値化 \rightarrow < k_a', v_a^* > \rightarrow RR(v_a^*) \rightarrow < k_a', v_a^+ > \rightarrow RR(k_a') \rightarrow < k_a^*, v_a^+ > \rightarrow RR(v_a^*) \rightarrow < k_a', v_a^* > \rightarrow RR(v_a^*) \rightarrow < 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        v_a^+ = \{-1, 0, 1\}
                                                                                                                                                                                                     v_a^* = \{-1, 1\}
v_a' = [-1, +1]
                                                                                                                                                                                                                                                           事前確率を求める対象の設定
                                          案1 \langle k'_a, \dot{v}'_a \rangle \longrightarrow \langle k^*_a, v^+_a \rangle ×
                                            案2 \langle k'_a, v^*_a \rangle \longrightarrow \langle k^*_a, v^+_a \rangle 〇
                                                                                                                         \langle k_{a}^{*}, v_{a}^{+} \rangle = \{\langle 1, 1 \rangle, \langle 1, -1 \rangle, \langle 0, 0 \rangle\}
                                                                                                                         \langle k'_{a}, v^*_{a} \rangle = \{\langle 1, 1 \rangle, \langle 1, -1 \rangle, \langle 0, 1 \rangle, \langle 0, -1 \rangle\}
                                                                                                                                                                                                                                                                                                                                                                                         < k_a , v_a>=<0 , _-*>
                                                                                 ・出力 \langle k_a^*, v_a^+ \rangle を用いて \langle k_a', v_a^* \rangle の事前確率を推定する.
```

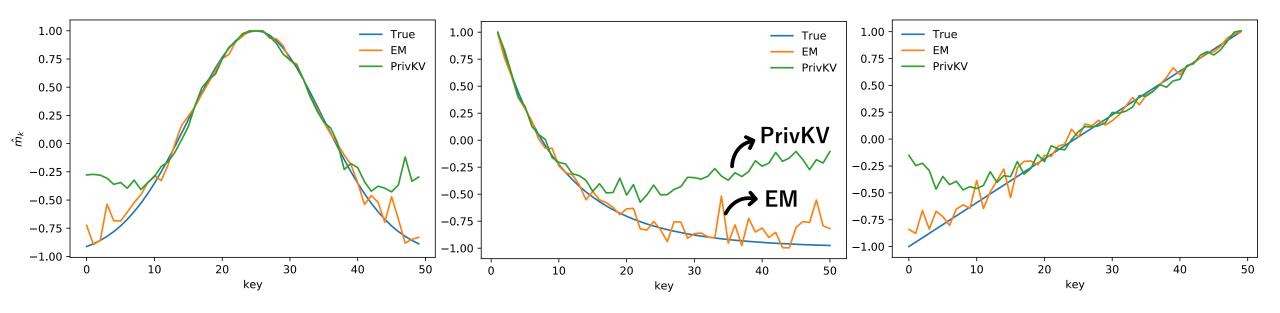
RQ.

- ・RQ1. 提案手法はPrivKVよりも高精度か?
- ・RQ2. 安全性 ε によって推定誤差に影響はあるのか?
- ・RQ3. データ規模nによって推定誤差に影響はあるのか?

評価実験の概要

実験目的

- 3つのRQ.を調査する

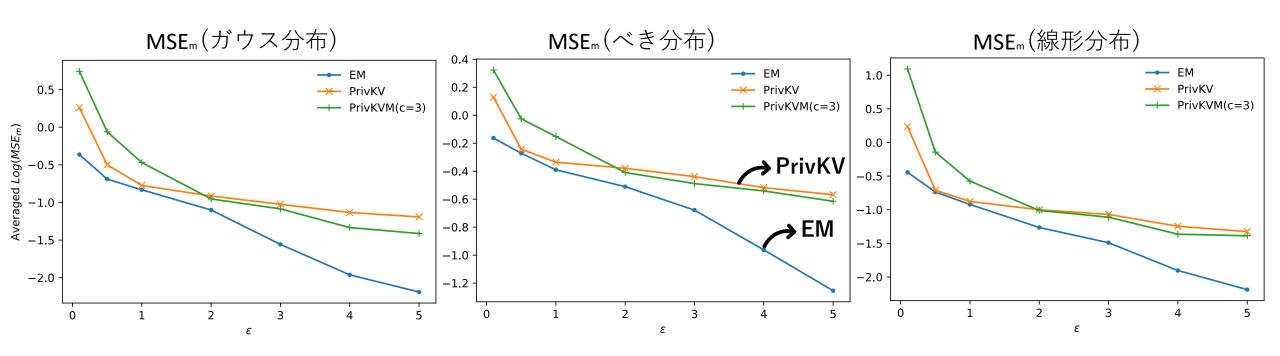

方法

- ・データ
 - keyとvalueがガウス分布、べき分布、線形分布に従う合成データ
- 評価実験
 - PrivKVと提案手法でkey-valueデータの度数と平均値を推定し, 推定誤差MSEを算出する.
 - この試行を10回行いMSEの平均値をアルゴリズムの評価値とする.

実験結果1 推定平均値の分布

RQ1. 提案手法はPrivKVよりも高精度か?

平均値の推定分布($\epsilon=4,\ n=10^5$)

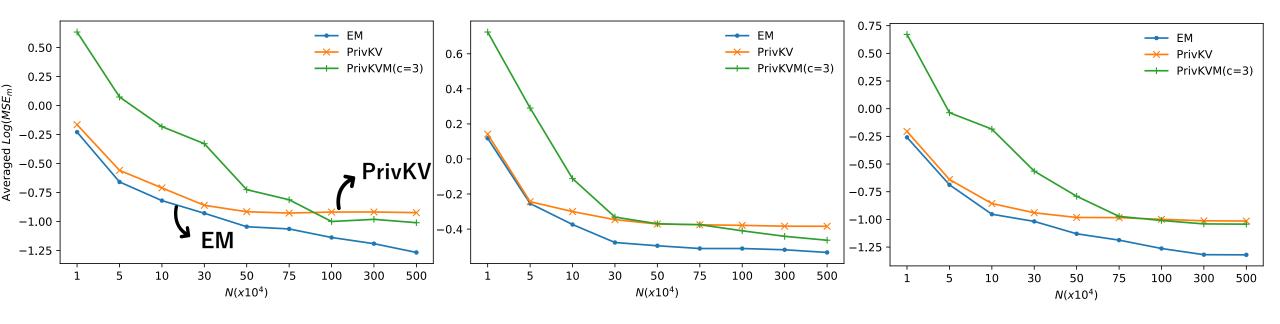


提案手法は低頻度のkeyに対しても高い推定精度

実験結果2

RQ2. 安全性 ε によって推定誤差に影響はあるのか?

key数=50, ユーザ数 $n = 10^5$



いかなる安全性 ϵ でも提案手法の誤差が小さい

実験結果3

RQ3. データ規模nによって推定誤差に影響はあるのか?

key数=50,
$$\varepsilon=2$$

データ規模に関わらず提案手法の誤差が小さい

まとめ

- ・PrivKVでは推定に最尤推定法が用いられており、度数が0.2以下の小さなkeyに関して、平均値の推定誤差が大きい。
- PrivKVで摂動化したkey-valueデータにEMアルゴリズムを適用して推定する手法を提案した。
- ・その結果、平均値推定では合成データの実験の平均で85.2%の改善が見られた。