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The de-identified data have been in 
enforcement according to the Japanese 

Act on the Protection of Personal 
Information (APPI) in 2017.



Attacker and Background Knowledge

ID Math English Physics

A 90 50 70

B 90 50 60

C 90 70 70

D 50 70 60

E 50 50 80

F 50 50 10

G 30 70 80

H 30 70 10

Exam Results

Attacker

I am curious
about grades of

Mr. Ito!

The risk of Mr. Ito
to be identified

by this attacker is

=
𝟏

𝟖
(𝟏𝟐. 𝟓%)

Background
Knowledge
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Mr. Ito’s Physics
grade must be 10

The risk of data
depends on the Attacker’s

background knowledge 



Research Question
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• What kind of background knowledge is risky?
• Which attribute is the riskiest in data?

Solution
• We propose a theoretical risk model which allows to 

quantify risk without developing re-identification programs.



ID User ID
Receipt

ID
Date Time Goods Price Number

1 A 1 2010/12/1 8:45 Apple 1 10

2 C 2 2010/12/1 10:20 Cup 1 30

3 D 3 2010/12/1 16:40 Book 10 5

4 B 4 2010/12/2 9:00 Apple 2 50

5 C 4 2010/12/2 10:00 Book 100 2

6 D 4 2010/12/2 20:00 Cup 20 5

7 A 5 2010/12/3 6:10 Apple 1 10

8 B 6 2010/12/3 10:00 Book 5 5

9 D 7 2010/12/3 12:20 Cup 50 1

Sample Data

Transaction sample data of 4 users in 3 days

9
records
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ID User ID
Receipt

ID
Date Time Goods Price Number

1 A 1 2010/12/1 8:45 Apple 1 10

2 C 2 2010/12/1 10:20 Cup 1 30

3 D 3 2010/12/1 16:40 Book 10 5

4 B 4 2010/12/2 9:00 Apple 2 50

5 C 4 2010/12/2 10:00 Book 100 2

6 D 4 2010/12/2 20:00 Cup 20 5

7 A 5 2010/12/3 6:10 Apple 1 10

8 B 6 2010/12/3 10:00 Book 5 5

9 D 7 2010/12/3 12:20 Cup 50 1

Sample Data

Transaction sample data of 4 users in 3 days

1. When did he/she buy?
2. How many kinds did he/she buy?
3. What did he/she buy?

9
records
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For example, we pick up
Attacker 1, Attacker 2, and Attacker 5.

Which is the riskiest attacker?



Transformed Sample Data
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ID
User 

ID
Receipt

ID
Date Time Goods Price Number

1 A 1 2010/12/1 8:45 Apple 1 10

2 C 2 2010/12/1 10:20 Cup 1 30

… … … … … … … …

User ID/Date 2010/12/1 2010/12/2 2010/12/3

A Apple - Apple

B - Apple Book

C Cup Book -

D Book Cup Cup



Risk of Attacker 5

User 
ID/Date

2010/12/1 2010/12/2 2010/12/3

A Apple - Apple

B - Apple Book

C Cup Book -

D Book Cup Cup

Attacker 5

Mr. Ito bought 
something in 

2010/12/1

knowledge 𝑿

Attacker 5 obtains 𝑿 with 

in probability of
𝟑

𝟗

Attacker 5 identifies Mr. Ito 

in probability of
𝟏

𝟑

Risk of Attacker 5 in this case

=
𝟑

𝟗
∙
𝟏

𝟑
=
𝟏

𝟗 13



Mean Identification Probability 𝑷𝒓(𝐢𝐝𝐞𝐧𝐭𝐢𝐟𝐲, 𝑿)

Attacker 5

Ito bought 
something in 

2010/12/1

knowledge 𝑿𝟏

Attacker 5

Ito bought 
something in 

2010/12/2

knowledge 𝑿𝟐

Attacker 5

Ito bought 
something in 

2010/12/3

knowledge 𝑿𝟑

𝟏

𝟗

𝟏

𝟗

𝟏

𝟗
+ + =

𝟏

𝟑

Mean id.prob,
Risk of Attacker 5
𝑷𝒓(𝐢𝐝𝐞𝐧𝐭𝐢𝐟𝐲, 𝑿)
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Attacker 5 identifies individual

with mean probability of 
𝟏

𝟑

when he obtains background knowledge.



Assumption 1 for Modeling 

𝑿: an element of the set of background knowledge.
𝑹𝑿: set of records that satisfy 𝑿
𝑼𝑿 : set of users that satisfy 𝑿

Assumption 1: 𝑹𝑿 = |𝑼𝑿|
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ID User ID
Receipt

ID
Date Time Goods Price Number

1 A 1 2010/12/1 8:45 Apple 1 10

2 C 2 2010/12/1 10:20 Cup 1 30

3 D 3 2010/12/1 16:40 Book 10 5

4 B 4 2010/12/2 9:00 Apple 2 50

… … … … … … … …

Transaction sample data of 4 users in 3 days

𝑹𝑿 = {𝟏, 𝟐, 𝟑}
𝑼𝑿 = {𝑨, 𝑪,𝑫}
𝑹𝑿 = 𝑼𝑿 = 𝟑



Modeling of Risk of Attackers

𝒎: number of records
𝑿: an element of the set of background knowledge 𝑫(𝑿).
𝝎𝑿 = |𝑫(𝑿)|

Theorem 4.1

When |𝑼𝑿| = |𝑹𝑿|, the mean identification probability is

𝑷𝒓(𝐚𝐭𝐭𝐚𝐜𝐤𝐞𝐝 𝐰𝐢𝐭𝐡 𝑿) = 

𝑿∈𝑫(𝑿)

𝟏

|𝑼𝑿|

|𝑹𝑿|

𝒎
=
𝝎𝑿

𝒎
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Assumption 2 for Modeling 

Goods ID
/Date

2010/12/1 2010/12/2 2010/12/3

Apple 1 1 1

Book 1 1 1

Cup 1 1 1

𝒑 𝑿 : the probability of gaining background knowledge 𝑿
𝒑(𝒀): the probability of gaining background knowledge 𝒀

Assumption 2: 𝒑 𝑿, 𝒀 = 𝒑 𝑿 𝒑 𝒀
(𝑿 and 𝒀 are independent)

Example: 𝑿 = "𝟐𝟎𝟏𝟎/𝟏𝟐/𝟏“, 𝒀 = "𝑨𝒑𝒑𝒍𝒆"
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𝒑 𝑿 = "𝟐𝟎𝟏𝟎/𝟏𝟐/𝟏" =
𝟏

𝟑
, 𝒑 𝒀 = "𝟏𝟎𝟎" =

𝟏

𝟑

𝒑 𝑿 = "𝟐𝟎𝟏𝟎/𝟏𝟐/𝟏" 𝒑 𝒀 = "𝟏𝟎𝟎" =
𝟏

𝟗
= 𝒑 𝑿 = "2010/12/1", 𝒀 = "𝟏𝟎𝟎"



Modeling of Risk of Attackers

𝒎: number of records
𝑿,𝒀: an element of the set of background knowledge

𝑫(𝑿), 𝑫(𝒀) in table 𝑻.
𝝎𝑿 = 𝑫 𝑿 , 𝝎𝒀 = 𝑫 𝒀

Theorem 4.2

When assumption 1, 2 are satisfied, the mean 
identification probability is

𝑷𝒓(𝐚𝐭𝐭𝐚𝐜𝐤𝐞𝐝 𝐰𝐢𝐭𝐡 𝑿, 𝒀) =
𝝎𝑿𝝎𝒀

𝒎
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Actual value and Accuracy of Our Model

𝐏𝐫(𝐚𝐭𝐭𝐚𝐜𝐤𝐞𝐝 𝐰𝐢𝐭𝐡 𝒅𝒂𝒕𝒆) =
𝝎𝒅𝒂𝒕𝒆

𝒎
=
𝟑

𝟗
=
𝟏

𝟑

Acutual value =
𝟏

𝟗
+
𝟏

𝟗
+
𝟏

𝟗
=
𝟏

𝟑

ID/date 2010/12/1 2010/12/2 2010/12/3

A Apple - Apple

B - Apple Book

C Cup Book -

D Book Cup Cup

Attacker 5
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User 
ID

Receipt
ID

Date Time Goods ID Price(＄) Num

12583 536370 2010/12/1 8:45 22728 3.75 24

12583 536370 2010/12/1 8:45 22727 3.75 24

12583 536370 2010/12/1 8:45 22726 3.75 12

12583 536370 2010/12/1 8:45 21724 0.85 12

… … … … … … …

Evaluation of Our Model 

38087
records
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Actual value Theoretical value

Compare

Transaction data of 400 users in 1 year



Experimental Results

Attacker Actual value
Theoretical 

value
When

How many
kinds

What

0 0.0025 0.0025 - - -

1 0.0965 0.0730 - - One

2 0.0807 0.0030 - ✓ -

3 0.7974 8.3240 - ✓ One

4 0.9788 4.5440 - ✓ All

5 0.1851 0.0076 ✓ - -

6 0.8945 21.1700 ✓ - One

7 0.9400 0.8680 ✓ ✓ -

8 0.9750 2415.0000 ✓ ✓ One

9 0.9994 1319.0000 ✓ ✓ All
23



Discussion
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Scatter plot of |𝑹𝑿| and |𝑼𝑿|
𝒙-axis: |𝑹𝑿|, 𝒚-axis: |𝑼𝑿|
Red Line: |𝑹𝑿| = |𝑼𝑿|

What(1 goods) When

How many kinds
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Assumption 1 is too strong.
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• We proposed 10 types of attackers with background knowledge about 
400 and evaluated the risk (mean identification probability) associated 
with these attackers.

• We found that date is the most useful for attackers among three kinds 
of background knowledge: purchase date, number of kinds, and 
knowledge of one good purchased.

• We demonstrated that the risk can be theoretically estimated without 
computing it exactly under two assumptions.

Conclusions
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